The classification of the Galilei-invariant systems of nonlinear reaction-diffusion equations

Authors

  • T.A. Barannyk

DOI:

https://doi.org/10.15407/dopovidi2015.07.007

Keywords:

Galilei transformation, reaction-diffusion equation, symmetry

Abstract

The full description of the Galilei-invariant systems of nonlinear reaction-diffusion equations is presented in the case where the roots of the characteristic equation of the diffusion matrix are real numbers.

Downloads

References

Danilov Yu.A. Group analysis of the Turing systems and of its analogues. Preprint, Kurchatov Institute of Atomic Energy, IAE–3287/1, Moscow, 1980 (in Russian).

Cherniha R., King J.R. J. Phys. A: Math. Gen., 2000, 33: 267–282. https://doi.org/10.1088/0305-4470/33/2/304

Cherniha R., King J.R. J. Phys. A: Math. Gen., 2000, 33: 7839–7841. https://doi.org/10.1088/0305-4470/33/43/401

Cherniha R., King J.R. J. Phys. A: Math. Gen., 2002, 36: 405–425. https://doi.org/10.1088/0305-4470/36/2/309

Nikitin A.G., Wiltshire R. Proceeding of Institute of Mathematics of the NAS of Ukraine, 2000, 30, Pt. 1: 47–59.

Nikitin A.G., Wiltshire R. J. J. Math. Phys., 2001, 42, No 4: 1667–1688. https://doi.org/10.1063/1.1331318

Nikitin A.G. Ukr. math. visnyk, 2005, 2, No 1: 149–200.

Malcev A. I. Foundations of linear algebra, Moscow: Nauka, 1970 (in Russian).

Published

05.02.2025

How to Cite

Barannyk, T. (2025). The classification of the Galilei-invariant systems of nonlinear reaction-diffusion equations . Reports of the National Academy of Sciences of Ukraine, (7), 7–12. https://doi.org/10.15407/dopovidi2015.07.007