Group analysis of two-dimensional Schrödinger equations with variable mass

Authors

  • T.M. Zasadko

DOI:

https://doi.org/10.15407/dopovidi2015.05.007

Keywords:

Hamiltonians, integrals of motion, integrated systems, Lie algebra, maximally superintegrable systems, Schrödinger equation, superintegrable systems

Abstract

The first-order integrals of motion for Schrödinger equations with variable mass are classified. Eight classes of such equations with non-equivalent symmetries are specified. They include integrable, superintegrable, and maximally superintegrable systems. A complete set of solutions for one of these systems is presented explicitly.

Downloads

References

Miller Jr.W., Post S., Winternitz P. J. Phys. A: Math. Theor., 2013, 46: 423001. https://doi.org/10.1088/1751-8113/46/42/423001

Nikitin A.G., Zasadko T.N. Zbirnyk prats' Institutu Matematyky NAN Ukrainy, 2014, 11: 228–240 (in Ukrainian).

Nikitin A.G., Zasadko T.N. J. Math. Phys., 2015, 56: 042101. https://doi.org/10.1063/1.4908107

Nikitin A.G. J. Phys. A: Math. Theor., 2012, 45: 485204. https://doi.org/10.1088/1751-8113/45/48/485204

Nikitin A.G. Ukr. Math. J., 1991, 43: 734–743. https://doi.org/10.1007/BF01058941

Zhelubenko D.P., Shtern A. I. Representation of Lie groups, Moscow: Nauka, 1983 (in Russian).

Fushchich V. I., Barannik L.F., Barannik A. F. Subgroup analysis of Galilei and Poincaré groups and reduction of nonlinear equations, Kyiv: Naukova Dumka, 1991 (in Russian).

Published

03.02.2025

How to Cite

Zasadko, T. (2025). Group analysis of two-dimensional Schrödinger equations with variable mass . Reports of the National Academy of Sciences of Ukraine, (5), 7–14. https://doi.org/10.15407/dopovidi2015.05.007