Weak solutions and convergence of the Galerkin method for the fractional diffusion equation

Authors

  • A. L. Hulianytskyi

DOI:

https://doi.org/10.15407/dopovidi2015.03.032

Keywords:

diffusion equation, Galerkin method, weak convergence

Abstract

We construct a semidiscrete Galerkin method for the time-fractional diffusion equation. We prove the weak convergence of the method in the case of the right-hand side from a negative space with respect to the space variable. The continuity of the solution with values in a space of square-integrable functions is proven.

Downloads

References

Metzler R., Klafter J. J. Phys. A: Math. Gen., 2004, 37: R161–R208. https://doi.org/10.1088/0305-4470/37/31/R01

Uchaikin V. V., The method of fractional derivatives, Ulianovsk: Artishok, 2008 (in Russian).

Sibatov R. T., Uchaikin V. V. Usp. fiz. nauk, 2009, 179, No 10: 1079–1104 (in Russian).

Sokolov I. M. Soft Matter, 2012, 42, No 8: 9043–9052. https://doi.org/10.1039/c2sm25701g

Bazhlekova E. Fractional evolution equations in Banach spaces, PhD Thesis., Eindhoven Univ. of Technology, 2001.

Ford N., Xiao J., Yan Y. Fract. Calc. Appl. An., 2011, 14, No 3: 454–474. https://doi.org/10.2478/s13540-011-0028-2

Jin B., Lazarov R., Pasciak J., Zhou Z. Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion, IMA J. Numer Anal., to appear., doi:10.1093/imanum/dru018. https://doi.org/10.1093/imanum/dru018

Chikrii A. A., Matichin I. I. Probl. upravleniia i informatiki, 2008, No 3: 133–142.

Alikhanov A. A. Dif. Equations, 2010, 46, No 5: 660–666. https://doi.org/10.1134/S0012266110050058

Evans L. C. Partial differential equations, Providence: Amer. Math. Soc., 1998.

Published

21.01.2025

How to Cite

Hulianytskyi, A. L. (2025). Weak solutions and convergence of the Galerkin method for the fractional diffusion equation . Reports of the National Academy of Sciences of Ukraine, (3), 32–39. https://doi.org/10.15407/dopovidi2015.03.032

Issue

Section

Information Science and Cybernetics