The velocity and absorption of sound near the critical point of stratification in the solution nitrobenzene–n-hexane

Authors

  • L. A. Bulavin Taras Shevchenko National University of Kiev Institute for Safety Problems of Nuclear Power Plants of the NAS of Ukraine, Kiev
  • О. I. Bilous Taras Shevchenko National University of Kiev Institute for Safety Problems of Nuclear Power Plants of the NAS of Ukraine, Kiev
  • О. S. Svechnikova Taras Shevchenko National University of Kiev Institute for Safety Problems of Nuclear Power Plants of the NAS of Ukraine, Kiev

DOI:

https://doi.org/10.15407/dopovidi2016.08.053

Keywords:

absorption of ultrasound, binary mixture, critical point of stratification, lifetime of fluctuations of the concentration, velocity

Abstract

The acoustic research of a binary solution nitrobenzene–n-hexane with various concentrations in a wide range of frequencies near its upper critical point of stratification is executed. It is shown that, by the dynamic scaling theory, the velocity of sound should be analyzed separately in three dynamic areas, where the role of fluctuations is absent, significant, or is on the verge of definition. Analysis of the temperature dependence of the velocity of ultrasound allowed us to estimate the lifetime of fluctuations of the concentration in the solution nitrobenzene–n-hexane at its approach to the critical point from the homogeneous state up to 0.1 K.

Downloads

Download data is not yet available.

References

Bhattacharjee K., Mirzaev S. Z., Kaatze U. Int. J Thermophys, 2012: 469–483. DOI: https://doi.org/10.1007/s10765-012-1167-3

Abdelraziq Issam R., Yun S. S., Stumpf F. B. J. Acoustic. Soc. Am., 1990, 89, No 4: 1831–1836.

Mirzaev S. Z., Kaatze U. Chem. Phys., 2012, 393: 129. DOI: https://doi.org/10.1016/j.chemphys.2011.11.035

Iwanowski I., Mirzaev S. Z., Orzechowski K., Kaatze U. J. Molecular Liquids, 2009, 145: 103–108. DOI: https://doi.org/10.1016/j.molliq.2009.01.001

Kozlovskii M. P. Condens. Matter. Phys., 2005, 8: 473–506. DOI: https://doi.org/10.5488/CMP.8.3.473

Chalyy K. A., Bulavin L. A., Chalyi A. V. J. Phys. Studies, 2005, 9, No 1: 66–70.

Shytilov V. A. Basics of ultrasound physics, Leningrad, Izd. LU, 1980.

Fixman M. J. Chem. Phys., 1962, 36: 1961–1964. DOI: https://doi.org/10.1063/1.1732810

Patashinskii A. Z., Pokrovsky V. L. Fluctuation theory of phase transitions. Moscow, Nauka, 1982 (in Russian).

Anisimov M. A. Critical phenomena in liquid crystals, Moskva, Nauka, 1987 (in Russian).

Artemenko S., Lozovsky T., Mazur V. J. of Phys. Condensed Matter., 2008, 20: 244119,8.

Bulavin L. A, Chekhun, V. F. Vasilkevich O. A. et al. J. Phys. Studies, 2004, 8, No 4: 334–337.

Sperkach V. S., Alekhin A. D., Bilous O. I. Ukr. J. Phys., 2004, 49: 655–658.

Hill R. M. Phys. Stat. Sol., 1981, 103, No 1: 231–239. DOI: https://doi.org/10.1002/pssb.2221030135

Bhattacharjee J. K., Ferrell R. A. Phys. Rev. A, 1981, 24: 1643–1647. DOI: https://doi.org/10.1103/PhysRevA.24.1643

Published

15.11.2024

How to Cite

Bulavin, L. A., Bilous О. I., & Svechnikova О. S. (2024). The velocity and absorption of sound near the critical point of stratification in the solution nitrobenzene–n-hexane . Reports of the National Academy of Sciences of Ukraine, (8), 53–62. https://doi.org/10.15407/dopovidi2016.08.053