Classical Dirichlet problem for the biharmonic equation in a semistrip with curvilinear end
DOI:
https://doi.org/10.15407/dopovidi2016.05.013Keywords:
biharmonic equation, Dirichlet problem, semistripAbstract
We prove the unique solvability of the Dirichlet problem in a classical formulation for the homogeneous biharmonic equation in a semistrip with curvilinear end.
Downloads
References
Fridman A. Partial Differential Equations of Parabolic Type, Moscow: Mir, 1968 (in Russian).
Kondrat’ev V. A., Oleinik O. A. Uspehi Mat. Nauk, 1983, 38, No 3: 3–76 (in Russian).
Agmon S. Bull. Amer. Math. Soc., 1957, 66, No 2: 77–88.
Miranda C. Ann. Math. Pure Appl., 1958, 46: 265–311.
Maz’ja V. G., Plamenevskii B. A. Math. Nachr., 1978, 81: 25–82 (in Russian).
Gomilko A. M. Differential Equations, 1998, 34, No 2: 231–241.
Parton V. Z., Perlin P. I. Integral equations in elasticity theory, Moscow: Nauka, 1977 (in Russian).
Gregory R. D. J. Elasticity, 1980, 10, No 3: 295–327.
Naimark M. A. Linear differential operators, Moscow: Nauka, 1969 (in Russian).
Vladimirov V. S. Equations of Mathematical Physics, Moscow: Nauka, 1981 (in Russian).
Riesz F., Sz¨okefalvi-Nagy B. Functional Analysis, Moscow: Mir, 1979 (in Russian).
Oleinik O. A., Iosif’jan G. A. Sibirskij Mat. Zh., 1978, 19, No 5: 1154–1165 (in Russian).
Maz’ya V. G. Boundary integral equations, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr.,
Vol. 27, Moscow: VINITI, 1988: 131–228 (in Russian).
Radon I. Uspehi Mat. Nauk, 1946, 1, No 3–4: 96–124 (in Russian).
Danilyuk I. I. Nonregular boundary value problems in the plane, Moscow: Nauka, 1975 (in Russian).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.