On accuracy of the approximate problem solution

Authors

DOI:

https://doi.org/10.15407/visn2022.10.053

Keywords:

total error of the computational algorithm, method errors, non-removable, rounding, optimal computational algorithms

Abstract

The article considers the issues of the quality of the approximate problem solution, the comprehensive approach to accuracy assessment (the total error of the computational algorithm), as well as the computational algorithms that are optimal in terms of accuracy, and the cases they should be used in.

References

Ivanov V.V. Metody vychisleniy na EVM (Methods of computing). Kyiv: Naukova Dumka, 1986 (in Russian).

Zadiraka V.K. Teoriya vychisleniya preobrazovaniya Fur’e (Theory for computing the Fourier transform). Kyiv: Naukova Dumka, 1983 (in Russian).

Morozov V.A. Regulyarnye metody resheniya nekorrektnyh zadach (Regular methods for solving ill-posed problems). Moscow, 1974 (in Russian).

Zadiraka V.K., Tereshchenko A.M. Kompiuterna aryfmetyka bahatorozriadnykh chysel u poslidovnii ta paralelnii modeliakh obchyslen. Kyiv: Naukova Dumka, 2021. (in Ukrainian).

Zadiraka V.M., Kudin A.M. Analiz stojkosti kriptograficheskih i steganograficheskih sistem na osnove obshchej teorii optimal’nyh algoritmov. Journal of Qafgaz University. Mathematics and Computer Science. 2010. 30: 49—58. (in Russian).

Sergienko I.V., Zadiraka V.K., Lytvyn O.M. Elements of the General Theory of Optimal Algorithms. Springer, 2021. https://doi.org/10.1007/978-3-030-90908-6

Published

2022-10-29

How to Cite

Zadiraka, V. K., & Shvidchenko, I. V. (2022). On accuracy of the approximate problem solution. Visnyk of the National Academy of Sciences of Ukraine, (10), 53–58. https://doi.org/10.15407/visn2022.10.053