On accuracy of the approximate problem solution
DOI:
https://doi.org/10.15407/visn2022.10.053Keywords:
total error of the computational algorithm, method errors, non-removable, rounding, optimal computational algorithmsAbstract
The article considers the issues of the quality of the approximate problem solution, the comprehensive approach to accuracy assessment (the total error of the computational algorithm), as well as the computational algorithms that are optimal in terms of accuracy, and the cases they should be used in.
References
Ivanov V.V. Metody vychisleniy na EVM (Methods of computing). Kyiv: Naukova Dumka, 1986 (in Russian).
Zadiraka V.K. Teoriya vychisleniya preobrazovaniya Fur’e (Theory for computing the Fourier transform). Kyiv: Naukova Dumka, 1983 (in Russian).
Morozov V.A. Regulyarnye metody resheniya nekorrektnyh zadach (Regular methods for solving ill-posed problems). Moscow, 1974 (in Russian).
Zadiraka V.K., Tereshchenko A.M. Kompiuterna aryfmetyka bahatorozriadnykh chysel u poslidovnii ta paralelnii modeliakh obchyslen. Kyiv: Naukova Dumka, 2021. (in Ukrainian).
Zadiraka V.M., Kudin A.M. Analiz stojkosti kriptograficheskih i steganograficheskih sistem na osnove obshchej teorii optimal’nyh algoritmov. Journal of Qafgaz University. Mathematics and Computer Science. 2010. 30: 49—58. (in Russian).
Sergienko I.V., Zadiraka V.K., Lytvyn O.M. Elements of the General Theory of Optimal Algorithms. Springer, 2021. https://doi.org/10.1007/978-3-030-90908-6