Редагування геному, або CRISPR/CAS9 — панацея від багатьох невиліковних хвороб чи перший крок до генного апокаліпсису?

Автор(и)

  • Сергій Васильович Комісаренко академік НАН України, директор Інституту біохімії ім. О.В. Палладіна НАН України
  • Світлана Іванівна Романюк кандидат біологічних наук, старший науковий співробітник Інституту біохімії ім. О.В. Палладіна НАН України

DOI:

https://doi.org/10.15407/visn2020.03.050

Ключові слова:

CRISPR/Cas9, редагування геномної ДНК, генна терапія, генетично модифіковані організми

Анотація

В огляді йдеться про історію відкриття, бурхливий розвиток і подальші перспективи застосування нового потужного інструменту для редагування геному — CRISPR/Cas9. Взявши за основу один з елементів захисної системи бактерій, вчені-біологи створили досить простий, дешевий і швидкий метод внесення змін у ДНК рослин, тварин і людини. Ніколи раніше людство не мало настільки точного знаряддя для маніпуляції генами, і це відкриває широкі можливості для профілактики та лікування багатьох захворювань. Водночас у суспільстві точаться гострі дискусії: благо чи зло несе людству CRISPR/Cas9? Як і будь-яка нова технологія, генне редагування викликає побоювання і піднімає низку серйозних етичних проблем, особливо щодо можливості його використання на клітинах зародкової лінії і геномі ембріонів людини. Проте вже зараз очевидно, що CRISPR/Cas9 — це не чергова модна «іграшка» для вчених, а революційна технологія, яка змінить наше майбутнє.

Посилання

Meselson M., Yuan R. DNA restriction enzyme from E. coli. Nature. 1968. 217(5134): 1110–1114. DOI: https://doi.org/10.1038/2171110a0

Weiss B., Richardson C.C. Enzymatic breakage and joining of deoxyribonucleic acid, I. Repair of single-strand breaks in DNA by an enzyme system from Escherichia coli infected with T4 bacteriophage. Proc. Natl. Acad. Sci. USA. 1967. 57(4): 1021–1028. DOI: https://doi.org/10.1073/pnas.57.4.1021

Deltcheva E., Chylinski K., Sharma C.M., Gonzales K., Chao Y., Pirzada Z.A., Eckert M.R., Vogel J., Charpentier E. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. 2011. 471(7340): 602–607. DOI: https://doi.org/10.1038/nature09886

Westra E.R., Semenova E., Datsenko K.A., Jackson R.N., Wiedenheft B., Severinov K., Brouns S.J. Type I-E CRISPR-cas systems discriminate target from non-target DNA through base pairing-independent PAM recognition. PLoS Genet. 2013. 9(9): e1003742. DOI: https://doi.org/10.1371/journal.pgen.1003742

Ishino Y., Shinagawa H., Makino K., Amemura M., Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 1987. 169(12): 5429–5433. DOI: https://doi.org/10.1128/JB.169.12.5429-5433.1987

Nakata A., Amemura M., Makino K. Unusual nucleotide arrangement with repeated sequences in the Escherichia coli K-12 chromosome. J. Bacteriol. 1989. 171(6): 3553–3556. DOI: https://doi.org/10.1128/JB.171.6.3553-3556.1989

Groenen P.M., Bunschoten A.E., van Soolingen D., van Embden J.D. Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis; application for strain differentiation by a novel typing method. Mol. Microbiol. 1993. 10(5): 1057–1065. DOI: https://doi.org/10.1111/j.1365-2958.1993.tb00976.x

Mojica F.J., Díez-Villaseñor C., Soria E., Juez G. Biological significance of a family of regularly spaced repeats in the genomes of archaea, bacteria and mitochondria. Mol. Microbiol. 2000. 36(1): 244–246. DOI: https://doi.org/10.1046/j.1365-2958.2000.01838.x

Jansen R., Embden J.D., Gaastra W., Schouls L.M. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol. 2002. 43(6): 1565–1575. DOI: https://doi.org/10.1046/j.1365-2958.2002.02839.x

Mojica F.J., Díez-Villaseñor C., García-Martínez J., Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of Molecular Evolution. 2005. 60(2): 174–182. DOI: https://doi.org/10.1007/s00239-004-0046-3

Pourcel C., Salvignol G., Vergnaud G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology. 2005. 151(3): 653–663. DOI: https://doi.org/10.1099/mic.0.27437-0

Bolotin A., Quinquis B., Sorokin A., Ehrlich S.D. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology. 2005. 151(8): 2551–2561. DOI: https://doi.org/10.1099/mic.0.28048-0

Barrangou R., Fremaux C., Deveau H., Richards M., Boyaval P., Moineau S., Romero D.A., Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007. 315(5819): 1709–1712. DOI: https://doi.org/10.1126/science.1138140

Brouns S.J., Jore M.M., Lundgren M., Westra E.R., Slijkhuis R.J., Snijders A.P., Dickman M.J., Makarova K.S., Koonin E.V., van der Oost J. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science. 2008. 321(5891): 960–964. DOI: https://doi.org/10.1126/science.1159689

Marraffini L.A., Sontheimer E.J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science. 2008. 322(5909): 1843–1845. DOI: https://doi.org/10.1126/science.1165771

Sontheimer E., Marraffini L. Target DNA interference with crRNA. U.S. Provisional Patent Application 61/009, 317, filed September 23, 2008; later published as US2010/0076057 (abandoned).

Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012. 337(6096): 816–821. DOI: https://doi.org/10.1126/science.1225829

Gasiunas G., Barrangou R., Horvath P., Siksnys V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. USA. 2012. 109: E2579–E2586. DOI: https://doi.org/10.1073/pnas.1208507109

Mali P., Yang L., Esvelt K.M., Aach J., Guell M., DiCarlo J.E., Norville J.E., Church G.M. RNA-guided human genome engineering via Cas9. Science. 2013. 339(6121): 823–826. DOI: https://doi.org/10.1126/science.1232033

Cong L., Ran F.A., Cox D., Lin S., Barretto R., Habib N., Hsu P.D., Wu X., Jiang W., Marraffini L.A., Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013. 339(6121): 819–823. DOI: https://doi.org/10.1126/science.1231143

Cho S.W., Kim S., Kim J.M., Kim J.S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 2013. 31(3): 230–232. DOI: https://doi.org/10.1038/nbt.2507

Meganuclease. Wikipedia. https://en.wikipedia.org/wiki/Meganuclease

O’Connell M.R., Oakes B.L., Sternberg S.H., East-Seletsky A., Kaplan M., Doudna J.A. Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature. 2014. 516(7530): 263–266. DOI: https://doi.org/10.1038/nature13769

Nelles D.A., Fang M.Y., O'Connell M.R., Xu J.L., Markmiller S.J., Doudna J.A., Yeo G.W. Programmable RNA tracking in live cells with CRISPR/Cas9. Cell. 2016. 165(2): 488–496. DOI: https://doi.org/10.1016/j.cell.2016.02.054

Vandenberghe L.H. Addgene: molecular therapy interview with Melina Fan and Karen Guerin. https://www.cell.com/molecular-therapy-family/molecular-therapy/fulltext/S1525-0016(18)30582-3 DOI: https://doi.org/10.1016/j.ymthe.2018.12.001

Brown K.V. Why CRISPR-edited food may be in supermarkets sooner than you think. https://gizmodo.com/why-crispr-edited-food-may-be-in-supermarkets-sooner-th-1822025033

Lee J., Wang F. Gene-edited baby by Chinese scientist: the opener of the pandora’s box. Science Insights. 2018. 2018:e000178. DOI: https://doi.org/10.15354/si.18.co015

Reardon S. CRISPR gene-editing creates wave of exotic model organisms. Nature. 2019. 568(7753): 441–442. DOI: https://doi.org/10.1038/d41586-019-01300-9

Wade N. Genes color a butterfly’s wings. Now scientists want to do it themselves. https://www.nytimes.com/2017/09/18/science/butterfly-wing-color-patterns-gene-editing.html

Qi L.S., Larson M.H., Gilbert L.A., Doudna J.A., Weissman J.S., Arkin A.P., Lim W.A. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013. 152(5): 1173–1183. DOI: https://doi.org/10.1016/j.cell.2013.02.022

Kungulovski G., Jeltsch A. Epigenome editing: state of the art, concepts, and perspectives. Trends Genet. 2016. 32(2): 101–113. DOI: https://doi.org/10.1016/j.tig.2015.12.001

Pefanis E., Wang J.G., Rothschild G., Lim J., Kazadi D., Sun J.B., Federation A., Chao J., Elliott O., Liu Z.P., Economides A.N., Bradner J.E., Rabadan R., Basu U. RNA exosome-regulated long non-coding RNA transcription controls super-enhancer activity. Cell. 2015. 161(4): 774–789. DOI: https://doi.org/10.1016/j.cell.2015.04.034

Elling R., Chan J., Fitzgerald K.A. Emerging role of long noncoding RNAs as regulators of innate immune cell development and inflammatory gene expression. Eur. J. Immunol. 2016. 46(3): 504–512. DOI: https://doi.org/10.1002/eji.201444558

Chen B., Gilbert L.A., Cimini B.A., Schnitzbauer J., Zhang W., Li G.W., Park J., Blackburn E.H., Weissman J.S., Qi L.S., Huang B. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell. 2013. 155(7): 1479–1491. DOI: https://doi.org/10.1016/j.cell.2013.12.001

Hajian R., Balderston S., Tran T., deBoer T., Etienne J., Sandhu M., Wauford N.A., Chung J.Y., Nokes J., Athaiya M., Paredes J., Peytavi R., Goldsmith B., Murthy N., Conboy I.M., Aran K. Detection of unamplified target genes via CRISPR-Cas9 immobilized on a graphene field-effect transistor. Nat. Biomed. Eng. 2019. 3(6): 427–437. DOI: https://doi.org/10.1038/s41551-019-0371-x

CRISPR's future for point-of-care diagnostics. https://www.diagnosticsworldnews.com/news/2020/02/18/crispr%27s-future-for-point-of-care-diagnostics

List of awards and honors received by Jennifer Doudna. Wikipedia. https://en.wikipedia.org/wiki/List_of_awards_and_honors_received_by_Jennifer_Doudna

Niu Y., Shen B., Cui Y., Chen Y., Wang J., Wang L., Kang Y., Zhao X., Si W., Li W., Xiang A.P., Zhou J., Guo X., Bi Y., Si C., Hu B., Dong G., Wang H., Zhou Z., Li T., Tan T., Pu X., Wang F., Ji S., Zhou Q., Huang X., Ji W., Sha J. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell. 2014. 156(4): 836–843. DOI: https://doi.org/10.1016/j.cell.2014.01.027

Shalem O., Sanjana N.E., Hartenian E., Shi X., Scott D.A., Mikkelsen T.S., Heckl D., Ebert B.L., Root D.E., Doench J.G., Zhang F. Genome-scale CRISPR/Cas9 knockout screening in human cells. Science. 2014. 343(6166): 84–87. DOI: https://doi.org/10.1126/science.1247005

Raphael B.J., Dobson J.R., Oesper L., Vandin F. Identifying driver mutations in sequenced cancer genomes: computational approaches to enable precision medicine. Genome Med. 2014. 6(1): 5. DOI: https://doi.org/10.1186/gm524

Wang T., Wei J.J., Sabatini D.M., Lander E.S. Genetic screens in human cells using the CRISPR/Cas9 system. Science. 2014. 343(6166): 80–84. DOI: https://doi.org/10.1126/science.1246981

Baltimore D., Berg P., Botchan M., Carroll D., Charo R.A., Church G., Corn J.E., Daley G.Q., Doudna J.A., Fenner M., Greely H.T., Jinek M., Martin G.S., Penhoet E., Puck J., Sternberg S.H., Weissman J.S., Yamamoto K.R. Biotechnology. A prudent path forward for genomic engineering and germline gene modification. Science. 2015. 348(6230): 36–38. DOI: https://doi.org/10.1126/science.aab1028

Vogel G. Bioethics. Embryo engineering alarm. Science. 2015. 347(6228): 1301. DOI: https://doi.org/10.1126/science.347.6228.1301

Clapper J.R. Worldwide threat assessment of the US intelligence community. https://www.dni.gov/files/documents/SASC_Unclassified_2016_ATA_SFR_FINAL.pdf

Baumgaertner E. As D.I.Y. gene editing gains popularity, ‘Someone is going to get hurt’. https://www.nytimes.com/2018/05/14/science/biohackers-gene-editing-virus.html

Liang P., Xu Y., Zhang X., Ding C., Huang R., Zhang Z., Lv J., Xie X., Chen Y., Li Y., Sun Y., Bai Y., Songyang Z., Ma W., Zhou C., Huang J. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell. 2015. 6(5): 363–372. DOI: https://doi.org/10.1007/s13238-015-0153-5

Ran F.A., Hsu P.D., Lin C.Y., Gootenberg J.S., Konermann S., Trevino A.E., Scott D.A., Inoue A., Matoba S., Zhang Y., Zhang F. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 2013. 154(6): 1380–1389. DOI: https://doi.org/10.1016/j.cell.2013.08.021

Fu Y., Sander J.D., Reyon D., Cascio V.M., Joung J.K. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 2014. 32(3): 279–284. DOI: https://doi.org/10.1038/nbt.2808

Kleinstiver B.P., Prew M.S., Tsai S.Q., Topkar V.V., Nguyen N.T., Zheng Z., Gonzales A.P., Li Z., Peterson R.T., Yeh J.R., Aryee M.J., Joung J.K. Engineered CRISPR/Cas9 nucleases with altered PAM specificities. Nature. 2015. 523(7561): 481–485. DOI: https://doi.org/10.1038/nature14592

Guilinger J.P., Thompson D.B., Liu D.R. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 2014. 32(6): 577–582. DOI: https://doi.org/10.1038/nbt.2909

Slaymaker I.M., Gao L., Zetsche B., Scott D.A., Yan W.X., Zhang F. Rationally engineered Cas9 nucleases with improved specificity. Science. 2016. 351(6268): 84–88. DOI: https://doi.org/10.1126/science.aad5227

Kleinstiver B.P., Pattanayak V., Prew M.S., Tsai S.Q., Nguyen N.T., Zheng Z., Joung J.K. High-fidelity CRISPR/Cas9 nucleases with no detectable genome-wide off-target effects. Nature. 2016. 529(7587): 490–495. DOI: https://doi.org/10.1038/nature16526

Zhou W., Deiters A. Conditional Control of CRISPR/Cas9 Function. Angew. Chem. Int. Ed. Engl. 2016. 55(18): 5394–5399. DOI: https://doi.org/10.1002/anie.201511441

Byrne J.A., Pedersen D.A., Clepper L.L., Nelson M., Sanger W.G., Gokhale S., Wolf D.P., Mitalipov S.M. Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature. 2007. 450(7169): 497–502. DOI: https://doi.org/10.1038/nature06357

Tachibana M., Sparman M., Sritanaudomchai H., Ma H., Clepper L., Woodward J., Li Y., Ramsey C., Kolotushkina O., Mitalipov S. Mitochondrial gene replacement in primate offspring and embryonic stem cells. Nature. 2009. 461(7262): 367–372. DOI: https://doi.org/10.1038/nature08368

Tachibana M., Amato P., Sparman M., Gutierrez N.M., Tippner-Hedges R., Ma H., Kang E., Fulati A., Lee H.S., Sritanaudomchai H., Masterson K., Larson J., Eaton D., Sadler-Fredd K., Battaglia D., Lee D., Wu D., Jensen J., Patton P., Gokhale S., Stouffer R.L., Wolf D., Mitalipov S. Human embryonic stem cells derived by somatic cell nuclear transfer. Cell. 2013. 153(6): 1228–1238. DOI: https://doi.org/10.1016/j.cell.2013.06.042

Kang E., Wu J., Gutierrez N.M., Koski A., Tippner-Hedges R., Agaronyan K., Platero-Luengo A., Martinez-Redondo P., Ma H., Lee Y., Hayama T., Van Dyken C., Wang X., Luo S., Ahmed R., Li Y., Ji D., Kayali R., Cinnioglu C., Olson S., Jensen J., Battaglia D., Lee D., Wu D., Huang T., Wolf D.P., Temiakov D., Belmonte J.C., Amato P., Mitalipov S. Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial DNA mutations. Nature. 2016. 540(7632): 270–275. DOI: https://doi.org/10.1038/nature20592

Ma H., Marti-Gutierrez N., Park S.W., Wu J., Lee Y., Suzuki K., Koski A., Ji D., Hayama T., Ahmed R., Darby H., Van Dyken C., Li Y., Kang E., Park A.R., Kim D., Kim S.T., Gong J., Gu Y., Xu X., Battaglia D., Krieg S.A., Lee D.M., Wu D.H., Wolf D.P., Heitner S.B., Belmonte J.C.I., Amato P., Kim J.S., Kaul S., Mitalipov S. Correction of a pathogenic gene mutation in human embryos. Nature. 2017. 548(7668): 413–419. DOI: https://doi.org/10.1038/nature23305

Second woman carrying gene-edited baby, Chinese authorities confirm. https://www.theguardian.com/science/2019/jan/22/second-woman-carrying-gene-edited-baby-chinese-authorities-confirm

CRISPR scientist gets three years of jail time for creating gene-edited babies. https://gizmodo.com/crispr-scientist-gets-three-years-of-jail-time-for-crea-1840724277

Act now on CRISPR babies. Nature. 2019. 570(137). DOI: https://doi.org/10.1038/d41586-019-01786-3

Collins F.S. NIH Director on Human Gene Editing: 'We Must Never Allow our Technology to Eclipse our Humanity'. https://www.discovermagazine.com/health/nih-director-on-human-gene-editing-we-must-never-allow-our-technology-to

Gene mutation meant to protect from HIV 'raises risk of early death'. https://www.theguardian.com/science/2019/jun/03/gene-mutation-protect-hiv-raises-risk-early-death

Andorno R., Yamin A.E. The right to design babies? Human rights and bioethics. https://www.openglobalrights.org/the-right-to-design-babies-human-rights-and-bioethics/

Citorik R.J., Mimee M., Lu T.K. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat. Biotechnol. 2014. 32(11): 1141–1145. DOI: https://doi.org/10.1038/nbt.3011

Bikard D., Euler C.W., Jiang W., Nussenzweig P.M., Goldberg G.W., Duportet X., Fischetti V.A., Marraffini L.A. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat. Biotechnol. 2014. 32(11): 1146–1150. DOI: https://doi.org/10.1038/nbt.3043

Yosef I., Manor M., Kiro R., Qimron U. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proc. Natl. Acad. Sci. USA. 2015. 112(23): 7267–7272. DOI: https://doi.org/10.1073/pnas.1500107112

Gantz V.M., Jasinskiene N., Tatarenkova O., Fazekas A., Macias V.M., Bier E., James A.A. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc. Natl. Acad. Sci. USA. 2015. 112(49): E6736–E6743. DOI: https://doi.org/10.1073/pnas.1521077112

Gantz V.M., Bier E. The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations. Science. 2015. 348(6233): 442–444. DOI: https://doi.org/10.1126/science.aaa5945

Stokstad E. Genetically engineered moths can knock down crop pests, but will they take off? https://www.sciencemag.org/news/2020/01/genetically-engineered-moths-can-knock-down-crop-pests-will-they-take DOI: https://doi.org/10.1126/science.abb1078

Yang L., Güell M., Niu D., George H., Lesha E., Grishin D., Aach J., Shrock E., Xu W., Poci J., Cortazio R., Wilkinson R.A., Fishman J.A., Church G. Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science. 2015. 350(6264): 1101–1104. DOI: https://doi.org/10.1126/science.aad1191

Niu D., Wei H.J., Lin L., George H., Wang T., Lee I.H., Zhao H.Y., Wang Y., Kan Y., Shrock E., Lesha E., Wang G., Luo Y., Qing Y., Jiao D., Zhao H., Zhou X., Wang S., Wei H., Güell M., Church G.M., Yang L. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science. 2017. 357(6357): 1303–1307. DOI: https://doi.org/10.1126/science.aan4187

Gene editing spurs hope for transplanting pig organs into humans. https://www.nytimes.com/2017/08/10/health/gene-editing-pigs-organ-transplants.html

Nunes Dos Santos R.M., Carneiro D'Albuquerque L.A., Reyes L.M., Estrada J.L., Wang Z.Y., Tector M., Tector A.J. CRISPR/Cas and recombinase-based human-to-pig orthotopic gene exchange for xenotransplantation. J. Surg. Res. 2018. 229: 28–40. DOI: https://doi.org/10.1016/j.jss.2018.03.051

Dong C., Qu L., Wang H., Wei L., Dong Y., Xiong S. Targeting hepatitis B virus cccDNA by CRISPR/Cas9 nuclease efficiently inhibits viral replication. Antiviral Res. 2015. 118: 110–117. DOI: https://doi.org/10.1016/j.antiviral.2015.03.015

Kaminski R., Chen Y., Fischer T., Tedaldi E., Napoli A., Zhang Y., Karn J., Hu W., Khalili K. Elimination of HIV-1 genomes from human T-lymphoid cells by CRISPR/Cas9 gene editing. Sci. Rep. 2016. 6: 22555. DOI: https://doi.org/10.1038/srep22555

Wang Z., Pan Q., Gendron P., Zhu W., Guo F., Cen S., Wainberg M.A., Liang C. CRISPR/Cas9-derived mutations both inhibit HIV-1 replication and accelerate viral escape. Cell Rep. 2016. 15(3): 481–489. DOI: https://doi.org/10.1016/j.celrep.2016.03.042

Kang X., He W., Huang Y., Yu Q., Chen Y., Gao X., Sun X., Fan Y. Introducing precise genetic modifications into human 3PN embryos by CRISPR/Cas-mediated genome editing. J. Assist. Reprod. Genet. 2016. 33(298): 1–8. DOI: https://doi.org/10.1007/s10815-016-0710-8

Xu L., Yang H., Gao Y., Chen Z., Xie L., Liu Y., Liu Y., Wang X., Li H., Lai W., He Y., Yao A., Ma L., Shao Y., Zhang B., Wang C., Chen H., Deng H. CRISPR/Cas9-Mediated CCR5 Ablation in Human Hematopoietic Stem/Progenitor Cells Confers HIV-1 Resistance In Vivo. Mol Ther. 2017. 25(8): 1782–1789. DOI: https://doi.org/10.1016/j.ymthe.2017.04.027

Dash P.K., Kaminski R., Bella R., Su H., Mathews S., Ahooyi T.M., Chen C., Mancuso P., Sariyer R., Ferrante P., Donadoni M., Robinson J.A., Sillman B., Lin Z., Hilaire J.R., Banoub M., Elango M., Gautam N., Mosley R.L., Poluektova L.Y., McMillan J., Bade A.N., Gorantla S., Sariyer I.K., Burdo T.H., Young W.B., Amini S., Gordon J., Jacobson J.M., Edagwa B., Khalili K., Gendelman H.E. Sequential LASER ART and CRISPR treatments eliminate HIV-1 in a subset of infected humanized mice. Nat. Commun. 2019. 10(1): 2753. DOI: https://doi.org/10.1038/s41467-019-10366-y

Yuan M., Webb E., Lemoine N.R., Wang Y. CRISPR-Cas9 as a powerful tool for efficient creation of oncolytic viruses. Viruses. 2016. 8(3): E72. DOI: https://doi.org/10.3390/v8030072

Kennedy E.M., Kornepati A.V., Goldstein M., Bogerd H.P., Poling B.C., Whisnant A.W., Kastan M.B., Cullen B.R. Inactivation of the human papillomavirus E6 or E7 gene in cervical carcinoma cells by using a bacterial CRISPR/Cas RNA-guided endonuclease. J. Virol. 2014. 88(20): 11965–11972. DOI: https://doi.org/10.1128/JVI.01879-14

Miller J.F., Sadelain M. The journey from discoveries in fundamental immunology to cancer immunotherapy. Cancer Cell. 2015. 27(4): 439–449. DOI: https://doi.org/10.1016/j.ccell.2015.03.007

Roth T.L., Puig-Saus C., Yu R., Shifrut E., Carnevale J., Li P.J., Hiatt J., Saco J., Krystofinski P., Li H., Tobin V., Nguyen D.N., Lee M.R., Putnam A.L., Ferris A.L., Chen J.W., Schickel J.N., Pellerin L., Carmody D., Alkorta-Aranburu G., Del Gaudio D., Matsumoto H., Morell M., Mao Y., Cho M., Quadros R.M., Gurumurthy C.B., Smith B., Haugwitz M., Hughes S.H., Weissman J.S., Schumann K., Esensten J.H., May A.P., Ashworth A., Kupfer G.M., Greeley S.A.W., Bacchetta R., Meffre E., Roncarolo M.G., Romberg N., Herold K.C., Ribas A., Leonetti M.D., Marson A. Reprogramming human T cell function and specificity with non-viral genome targeting. Nature. 2018. 559(7714): 405–409. DOI: https://doi.org/10.1038/s41586-018-0326-5

Zaroff S. CAR T-Cell therapies with a bispecific twist. Genet. Eng. Biotech. N. 2018. 38(13). https://www.genengnews.com/magazine/car-t-cell-therapies-with-a-bispecific-twist/ DOI: https://doi.org/10.1089/gen.38.13.09

Kojima R., Scheller L., Fussenegger M. Nonimmune cells equipped with T-cell-receptor-like signaling for cancer cell ablation. Nature Chemical Biology. 2018. 14: 42–49. DOI: https://doi.org/10.1038/nchembio.2498

Montel-Hagen A., Seet C.S., Li S., Chick B., Zhu Y., Chang P., Tsai S., Sun V., Lopez S., Chen H.C., He C., Chin C.J., Casero D., Crooks G.M. Organoid-induced differentiation of conventional T cells from human pluripotent stem cells. Cell Stem Cell. 2019. 24(3): 376–389.e8. DOI: https://doi.org/10.1016/j.stem.2018.12.011

White M.K., Khalili K. CRISPR/Cas9 and cancer targets: future possibilities and present challenges. Oncotarget. 2016. 7(11): 12305–12317. DOI: https://doi.org/10.18632/oncotarget.7104

Cyranoski D. CRISPR gene-editing tested in a person for the first time. Nature News. 2016. 539(7630): 479. DOI: https://doi.org/10.1038/nature.2016.20988

New cancer drug targets accelerate path to precision medicine. https://www.drugtargetreview.com/news/42672/new-cancer-drug-targets-accelerate-path-to-precision-medicine/

Booth C., Gaspar H.B., Thrasher A.J. Treating immunodeficiency through HSC gene therapy. Trends Mol. Med. 2016. 22(4): 317–327. DOI: https://doi.org/10.1016/j.molmed.2016.02.002

Guan Y., Ma Y., Li Q., Sun Z., Ma L., Wu L., Wang L., Zeng L., Shao Y., Chen Y., Ma N., Lu W., Hu K., Han H., Yu Y., Huang Y., Liu M., Li D. CRISPR/Cas9-mediated somatic correction of a novel coagulator factor IX gene mutation ameliorates hemophilia in mouse. EMBO Mol. Med. 2016. 8(5): 477–488. DOI: https://doi.org/10.15252/emmm.201506039

Nelson C.E., Hakim C.H., Ousterout D.G., Thakore P.I., Moreb E.A., Castellanos Rivera R.M., Madhavan S., Pan X., Ran F.A., Yan W.X., Asokan A., Zhang F., Duan D., Gersbach C.A. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science. 2016. 351(6271): 403–407. DOI: https://doi.org/10.1126/science.aad5143

DeWitt M.A., Magis W., Bray N.L., Wang T., Berman J.R., Urbinati F., Heo S.J., Mitros T., Muñoz D.P., Boffelli D., Kohn D.B., Walters M.C., Carroll D., Martin D.I., Corn J.E. Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells. Sci. Transl. Med. 2016. 8(360): 360ra134. DOI: https://doi.org/10.1126/scitranslmed.aaf9336

CRISPR patent fight turns ugly as UC accuses Broad researchers of lying about claims. https://www.genomeweb.com/business-news/crispr-patent-fight-turns-ugly-uc-accuses-broad-researchers-lying-about-claims

Sanders R. UC rings out 2019 with its 20th CRISPR patent. https://news.berkeley.edu/2019/12/31/uc-rings-out-2019-with-its-20th-crispr-patent/

Craven L., Herbert M., Murdoch A., Murphy J., Lawford Davies J., Turnbull D.M. Research into policy: a brief history of mitochondrial donation. Stem Cells. 2016. 34(2): 265–267. DOI: https://doi.org/10.1002/stem.2221

Callaway E. UK scientists gain license to edit genes in human embryos. Nature News. 2016. 530(7588): 18. DOI: https://doi.org/10.1038/nature.2016.19270

Mills P. Genome editing and human reproduction: The Nuffield Council on Bioethics' report. https://www.bionews.org.uk/page_137343

Becker R. The 'three-parent baby' fertility doctor needs to stop marketing the procedure, FDA says. https://www.theverge.com/2017/8/5/16100680/three-parent-baby-fertility-doctor-fda-letter-violations

This fertility doctor is pushing the boundaries of human reproduction, with little regulation. https://www.washingtonpost.com/national/health-science/this-fertility-doctor-is-pushing-the-boundaries-of-human-reproduction-with-little-regulation/2018/05/11/ea9105dc-1831-11e8-8b08-027a6ccb38eb_story.html

Sangamo ZFN Technology Platform. 2018. https://www.sangamo.com/application/files/6915/3002/3307/IR-Technology_v06.12.18_1.pdf

Haridy R. First CRISPR therapy administered in landmark human trial. https://newatlas.com/crispr-trial-underway-vertex-gene-therapy/58643/

The Future of CRISPR. http://www.fwreports.com/dossier/the-future-of-crispr/#.XmgL-kFR2Uk

"Tegsedi": an oligonucleotide drug against familial amyloid polyneuropathy. (in Russian). https://mosmedpreparaty.ru/news/16897

[«Тегседи»: олигонуклеотидное лекарство против семейной амилоидной полинейропатии.]

Stolberg S.G. The biotech death of Jesse Gelsinger. http://www.nytimes.com/1999/11/28/magazine/the-biotech-death-of-jesse-gelsinger.html

Bersenev A. The history of gene therapy drugs approval on the market. http://stemcellassays.com/2011/12/history-gene-therapy-drugs-approval-market/

Morrison C. 1-million price tag set for Glybera gene therapy. Nature Biotechnology. 2015. 33: 217–218. DOI: https://doi.org/10.1038/nbt0315-217

Kozubek J. Who will pay for CRISPR? https://www.statnews.com/2017/06/26/crispr-insurance-companies-pay/

Talimogene laherparepvec. Wikipedia. https://en.wikipedia.org/wiki/Talimogene_laherparepvec

Kegel M. Imlygic-Yervoy combo twice as effective as Yervoy in fighting melanoma, study finds. https://immuno-oncologynews.com/2017/10/12/melanoma-investigational-therapy-combo-imlygic-yervoy-twice-as-effective-yervoy-alone-study-finds/

Mullin E. A gene therapy that cures a rare genetic disease just got its first customer, a year after it was approved. http://www.businessinsider.com/gsks-strimvelis-gene-therapy-used-for-the-first-time-after-approval-2017-5

Al Idrus A. Orchard Therapeutics' 2019: Pipeline progress, breaking ground on its $90M manufacturing site. https://www.fiercebiotech.com/biotech/orchard-therapeutics-2019-pipeline-progress-breaking-ground-its-90m-manufacturing-site

Sampson T.R., Saroj S.D., Llewellyn A.C., Tzeng Y.L., Weiss D.S. A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature. 2013. 497(7448): 254–257. DOI: https://doi.org/10.1038/nature12048

Koonin E.V., Krupovic M. Evolution of adaptive immunity from transposable elements combined with innate immune systems. Nat. Rev. Genet. 2015. 16(3): 184–192. DOI: https://doi.org/10.1038/nrg3859

Wright A.V., Liu J.J., Knott G.J., Doxzen K.W., Nogales E., Doudna J.A. Structures of the CRISPR genome integration complex. Science. 2017. 357(6356): 1113–1118. DOI: https://doi.org/10.1126/science.aao0679

Jiang F., Taylor D.W., Chen J.S., Kornfeld J.E., Zhou K., Thompson A.J., Nogales E., Doudna J.A. Structures of a CRISPR/Cas9 R-loop complex primed for DNA cleavage. Science. 2016. 351(6275): 867–871. DOI: https://doi.org/10.1126/science.aad8282

Zetsche B., Gootenberg J.S., Abudayyeh O.O., Slaymaker I.M., Makarova K.S., Essletzbichler P., Volz S.E., Joung J., van der Oost J., Regev A., Koonin E.V., Zhang F. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. 2015. 163(3): 759–771. DOI: https://doi.org/10.1016/j.cell.2015.09.038

Gleeson A., Sawyer A. CRISPR/Cas9: the gold standard of genome editing? Biotechniques. 2018. 64(6): 239–243. DOI: https://doi.org/10.2144/btn-2018-0066

Sansbury B.M., Wagner A.M., Nitzan E., Gabi T., Kmeic E.B. CRISPR-directed in vitro gene editing of plasmid DNA catalyzed by Cpf1 (Cas12a) nuclease and a mammalian cell-free extract. CRISPR J. 2018. 1(2): 191–202. DOI: https://doi.org/10.1089/crispr.2018.0006

Burstein D., Harrington L.B., Strutt S.C., Probst A.J., Anantharaman K., Thomas B.C., Doudna J.A., Banfield J.F. New CRISPR-Cas systems from uncultivated microbes. Nature. 2017. 542(7640): 237–241. DOI: https://doi.org/10.1038/nature21059

Hegge J.W., Swarts D.C., van der Oost J. Prokaryotic Argonaute proteins: novel genome-editing tools? Nat. Rev. Microbiol. 2017. 16(1): 5–11. DOI: https://doi.org/10.1038/nrmicro.2017.73

Harrington L.B., Burstein D., Chen J.S., Paez-Espino D., Ma E., Witte I.P., Cofsky J.C., Kyrpides N.C., Banfield J.F., Doudna J.A. Programmed DNA Destruction by Miniature CRISPR-Cas14 Enzymes. Science. 2018. 362(6416): 839–842. DOI: https://doi.org/10.1126/science.aav4294

Abudayyeh O.O., Gootenberg J.S., Konermann S., Joung J., Slaymaker I.M., Cox D.B., Shmakov S., Makarova K.S., Semenova E., Minakhin L., Severinov K., Regev A., Lander E.S., Koonin E.V., Zhang F. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science. 2016. 353(6299): aaf5573. DOI: https://doi.org/10.1126/science.aaf5573

Smargon A.A., Cox D.B., Pyzocha N.K., Zheng K., Slaymaker I.M., Gootenberg J.S., Abudayyeh O.A., Essletzbichler P., Shmakov S., Makarova K.S., Koonin E.V., Zhang F. Cas13b is a type VI-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28. Mol. Cell. 2017. 65(4): 618–630.e7. DOI: https://doi.org/10.1016/j.molcel.2016.12.023

Yan W.X., Chong S., Zhang H., Makarova K.S., Koonin E.V., Cheng D.R., Scott D.A. Cas13d is a compact RNA-targeting type VI CRISPR effector positively modulated by a WYL-domain-containing accessory protein. Mol Cell. 2018. 70(2): 327–339. DOI: https://doi.org/10.1016 / j.molcel.2018.02.028

Chatterjee P., Jakimo N., Jacobson J.M. Minimal PAM specificity of a highly similar SpCas9 ortholog. Sci. Adv. 2018. 4(10): eaau0766. DOI: https://doi.org/10.1126/sciadv.aau0766

New DNA ‘shredder’ technique goes beyond CRISPR’s scissors. https://www.drugtargetreview.com/news/42518/new-dna-shredder-technique-goes-beyond-crisprs-scissors/

Sadhu M.J., Bloom J.S., Day L., Siegel J.J., Kosuri S., Kruglyak L. Highly parallel genome variant engineering with CRISPR-Cas9. Nat. Genet. 2018. 50(4): 510–514. DOI: https://doi.org/10.1038/s41588-018-0087-y

Enzyme fragment complementation assay technology. https://www.discoverx.com/technologies-platforms/enzyme-fragment-complementation-technology

Biosensor development using CRISPR to quantify endogenous protein modulated by targeted protein degraders. http://www.healthtech.com/eurofins-biosensor-Development-using-crispr/

Zengerle M., Chan K.-H., Ciulli A. Selective small molecule induced degradation of the BET bromodomain protein BRD4. ACS Chem. Biol. 2015. 10(8): 1770. DOI: https://doi.org/10.1021/acschembio.5b00216

Single-stranded DNA synthesis service. https://www.genscript.com/new-single-stranded-dna-synthesis-service.html

Strecker J., Ladha A., Gardner Z., Schmid-Burgk J.L., Makarova K.S., Koonin E.V., Zhang F. RNA-guided DNA insertion with CRISPR-associated transposases. Science. 2019. 365(6448): 48–53. DOI: https://doi.org/10.1126/science.aax9181

Stafforst T., Schneider M.F. An RNA-deaminase conjugate selectively repairs point mutations. Angew. Chem. Int. Ed. Engl. 2012. 51(44): 11166–11169. DOI: https://doi.org/10.1002/anie.201206489

Reardon S. Step aside CRISPR, RNA editing is taking off. Nature. 2020. 578(7793): 24–27. DOI: https://doi.org/10.1038/d41586-020-00272-5

Pennisi E. The CRISPR craze. Science. 2013. 341(6148): 833–836. DOI: https://doi.org/10.1126/science.341.6148.833

Gene editing like CRISPR is too important to be left to scientists alone. https://www.theguardian.com/commentisfree/2019/oct/22/gene-editing-crispr-scientists

##submission.downloads##

Опубліковано

2020-03-24