Нова стратегія боротьби з раком, або як працюють «гальма» системи імунітету

Нобелівська премія з фізіології та медицини 2018 року

Автор(и)

  • Сергій Васильович Комісаренко академік НАН України, директор Інституту біохімії ім. О.В. Палладіна НАН України
  • Світлана Іванівна Романюк кандидат біологічних наук, старший науковий співробітник Інституту біохімії ім. О.В. Палладіна НАН України

DOI:

https://doi.org/10.15407/visn2019.02.044

Анотація

Нобелівську премію з фізіології та медицини у 2018 р. присуджено двом ученим-імунологам — Джеймсу Патрику Еллісону (James Patrick Allison) з Онкологічного центру ім. М.Д. Андерсона при Техаському університеті (США) та Тасуку Хондзьо (Tasuku Honjo) з Кіотського університету (Японія) за «відкриття терапії онкологічних захворювань шляхом пригнічення негативної імунної регуляції». Найпрестижнішою науковою нагородою 2018 року відзначено втілення в медичну практику результатів сучасних імунологічних досліджень, які останніми роками вже допомагають онкологам успішно боротися зі злоякісними пухлинами.

Посилання

The 2018 Clarivate Citation Laureates. https://web.ornl.gov/sci/first/ClarivateAnalyticsCitationLaureates.pdf

Press release: The Nobel Prize in Physiology or Medicine 2018. https://www.nobelprize.org/prizes/medicine/2018/press-release/

Global Cancer Observatory, 2018. http://gco.iarc.fr/

From Wikipedia, the free encyclopedia. James P. Allison. https://en.wikipedia.org/wiki/James_P._Allison

From Wikipedia, the free encyclopedia. Tasuku Honjo. https://en.wikipedia.org/wiki/Tasuku_Honjo

Gast C.E., Silk A.D., Zarour L., Riegler L., Burkhart J.G., Gustafson K.T., Parappilly M.S., Roh-Johnson M., Goodman J.R., Olson B., Schmidt M., Swain J.R., Davies P.S., Shasthri V., Iizuka S., Flynn P., Watson S., Korkola J., Courtneidge S.A., Fischer J.M., Jaboin J., Billingsley K.G., Lopez C.D., Burchard J., Gray J., Coussens L.M., Sheppard B.C., Wong M.H. Cell fusion potentiates tumor heterogeneity and reveals circulating hybrid cells that correlate with stage and survival. Science Advances. 2018. 4(9): eaat7828. https://doi.org/10.1126/sciadv.aat7828

Busch W. Aus der Sitzung der medizinischen Section vom 18 November 1867. Berliner klinische Wochenschr. 1868. 5: 137.

Coley W.B. Contribution to the knowledge of sarcoma. Ann Surg. 1891. 14(3): 199.

From Wikipedia. Coley's toxins. https://en.wikipedia.org/wiki/Coley%27s_toxins

Lesslauer W., Koning F., Ottenhoff T., Giphart M., Goulmy E., van Rood J.J. T90/44 (9.3 antigen). A cell surface molecule with a function in human T cell activation. Eur. J. Immunol. 1986. 16(10): 1289. https://doi.org/10.1002/eji.1830161017

López de Castro J.A., Orr H.T., Robb R.J., Kostyk T.G., Mann D.L., Strominger J.L. Complete amino acid sequence of a papain-solubilized human histocompatibility antigen HLA-B7. 1. Isolation and amino acid composition of fragments and of tryptic and chymotryptic peptides. Biochemistry. 1979. 18(25): 5704. https://doi.org/10.1021/bi00592a029

Brunet J.F., Denizot F., Luciani M.F., Roux-Dosseto M., Suzan M., Mattei M.G., Golstein P. A new member of the immunoglobulin superfamily – CTLA-4. Nature. 1987. 328(6127): 267. https://doi.org/10.1038/328267a0

Krummel M.F., Allison J.P. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J. Exp. Med. 1995. 182(2): 459 .https://doi.org/10.1084/jem.182.2.459

Harper K., Balzano C., Rouvier E., Mattéi M.G., Luciani M.F., Golstein P. CTLA-4 and CD28 activated lymphocyte molecules are closely related in both mouse and human as to sequence, message expression, gene structure, and chromosomal location. J. Immunol. 1991. 147(3): 1037.

Egen J.G., Allison J.P. Cytotoxic T lymphocyte antigen-4 accumulation in the immunological synapse is regulated by TCR signal strength. Immunity. 2002. 16(1): 23. https://doi.org/10.1016/S1074-7613(01)00259-X

Ganesan A., Moon T.C., Barakat K.H. Revealing the atomistic details behind the binding of B7-1 to CD28 and CTLA-4: A comprehensive protein-protein modelling study. Biochim. Biophys. Acta Gen. Subj. 2018. 1862(12): 2764. https://doi.org/10.1016/j.bbagen.2018.08.010

Ishida Y., Agata Y., Shibahara K., Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 1992. 11(11): 3887. https://doi.org/10.1002/j.1460-2075.1992.tb05481.x

Nishimura H., Okazaki T., Tanaka Y., Nakatani K., Hara M., Matsumori A., Sasayama S., Mizoguchi A., Hiai H., Minato N., Honjo T. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science. 2001. 291(5502): 319. https://doi.org/10.1126/science.291.5502.319

Freeman G.J., Long A.J., Iwai Y., Bourque K., Chernova T., Nishimura H., Fitz L.J., Malenkovich N., Okazaki T., Byrne M.C., Horton H.F., Fouser L., Carter L., Ling V., Bowman M.R., Carreno B.M., Collins M., Wood C.R., Honjo T. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 2000. 192(7): 1027. https://doi.org/10.1084/jem.192.7.1027

Latchman Y., Wood C.R., Chernova T., Chaudhary D., Borde M., Chernova I., Iwai Y., Long A.J., Brown J.A., Nunes R., Greenfield E.A., Bourque K., Boussiotis V.A., Carter L.L., Carreno B.M., Malenkovich N., Nishimura H., Okazaki T., Honjo T., Sharpe A.H., Freeman G.J. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat. Immunol. 2001. 2(3): 261. https://doi.org/10.1038/85330

Zhang X., Schwartz J.C., Guo X., Bhatia S., Cao E., Lorenz M., Cammer M., Chen L., Zhang Z.Y., Edidin M.A., Nathenson S.G., Almo S.C. Structural and functional analysis of the costimulatory receptor programmed death-1. Immunity. 2004. 20(3): 337. https://doi.org/10.1016/S1074-7613(04)00051-2

Iwai Y., Ishida M., Tanaka Y., Okazaki T., Honjo T., Minato N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc. Natl. Acad. Sci. USA. 2002. 99(19): 12293. https://doi.org/10.1073/pnas.192461099

Dong H., Strome S.E., Salomao D.R., Tamura H., Hirano F., Flies D.B., Roche P.C., Lu J., Zhu G., Tamada K., Lennon V.A., Celis E., Chen L. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat. Med. 2002. 8(8): 793. https://doi.org/10.1038/nm730

Lenschow D.J., Zeng Y., Thistlethwaite J.R., Montag A., Brady W., Gibson M.G., Linsley P.S., Bluestone J.A. Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA4lg. Science. 1992. 257(5071): 789. https://doi.org/10.1126/science.1323143

Leach D.R., Krummel M.F., Allison J.P. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 1996. 271(5256): 1734. https://doi.org/10.1126/science.271.5256.1734

Iwai Y., Terawaki S., Honjo T. PD-1 blockade inhibits hematogenous spread of poorly immunogenic tumor cells by enhanced recruitment of effector T cells. Int. Immunol. 2005. 17(2): 133. https://doi.org/10.1093/intimm/dxh194

Hirano F., Kaneko K., Tamura H., Dong H., Wang S., Ichikawa M., Rietz C., Flies D.B., Lau J.S., Zhu G., Tamada K., Chen L. Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res. 2005. 65(3): 1089.

Wolchok J.D., Hodi F.S., Weber J.S., Allison J.P., Urba W.J., Robert C., O'Day S.J., Hoos A., Humphrey R., Berman D.M., Lonberg N., Korman A.J. Development of ipilimumab: a novel immunotherapeutic approach for the treatment of advanced melanoma. Ann. NY Acad. Sci. 2013. 1291: 1. https://doi.org/10.1111/nyas.12180

Topalian S.L., Hodi F.S., Brahmer J.R., Gettinger S.N., Smith D.C., McDermott D.F., Powderly J.D., Carvajal R.D., Sosman J.A., Atkins M.B., Leming P.D., Spigel D.R., Antonia S.J, Horn L., Drake C.G., Pardoll D.M., Chen L., Sharfman W.H., Anders R.A., Taube J.M., McMiller T.L., Xu H., Korman A.J., Jure-Kunkel M., Agrawal S., McDonald D., Kollia G.D., Gupta A., Wigginton J.M., Sznol M. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 2012. 366(26): 2443. https://doi.org/2443. 10.1056/NEJMoa1200690

Weber J., Mandala M., Del Vecchio M., Gogas H.J., Arance A.M., Cowey C.L., Dalle S., Schenker M., Chiarion-Sileni V., Marquez-Rodas I., Grob J.J., Butler M.O., Middleton M.R., Maio M., Atkinson V., Queirolo P., Gonzalez R., Kudchadkar R.R., Smylie M., Meyer N., Mortier L., Atkins M.B., Long G.V., Bhatia S., Lebbé C., Rutkowski P., Yokota K., Yamazaki N., Kim T.M., de Pril V., Sabater J., Qureshi A., Larkin J., Ascierto P.A.; CheckMate 238 Collaborators. Adjuvant Nivolumab versus Ipilimumab in Resected Stage III or IV Melanoma. N. Engl. J. Med. 2017. 377(19): 1824. https://doi.org/10.1056/NEJMoa1709030

Wolchok J.D., Chiarion-Sileni V., Gonzalez R., Rutkowski P., Grob J.J., Cowey C.L., Lao C.D., Wagstaff J., Schadendorf D., Ferrucci P.F., Smylie M., Dummer R., Hill A., Hogg D., Haanen J., Carlino M.S., Bechter O., Maio M., Marquez-Rodas I., Guidoboni M., McArthur G., Lebbé C., Ascierto P.A., Long G.V., Cebon J., Sosman J., Postow M.A., Callahan M.K., Walker D., Rollin L., Bhore R., Hodi F.S., Larkin J. Overall Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2017. 377(14): 1345. https://doi.org/10.1056/NEJMoa1709684

USA former president Carter recovered from brain cancer. https://korrespondent.net/world/3599395-eks-prezydent-ssha-karter-yzlechylsia-ot-raka-mozgha

Eggermont A.M.M., Robert C., Ribas A. The new era of adjuvant therapies for melanoma. Nat. Rev. Clin. Oncol. 2018. 15(9): 535. https://doi.org/10.1038/s41571-018-0048-5

Ansell S.M., Lesokhin A.M., Borrello I., Halwani A., Scott E.C., Gutierrez M., Schuster S.J., Millenson M.M., Cattry D., Freeman G.J., Rodig S.J., Chapuy B., Ligon A.H., Zhu L., Grosso J.F., Kim S.Y., Timmerman J.M., Shipp M.A., Armand P. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma. N. Engl. J. Med. 2015. 372(4): 311. https://doi.org/10.1056/NEJMoa1411087

Rizvi N.A., Hellmann M.D., Snyder A., Kvistborg P., Makarov V., Havel J.J., Lee W., Yuan J., Wong P., Ho T.S., Miller M.L., Rekhtman N., Moreira A.L., Ibrahim F., Bruggeman C., Gasmi B., Zappasodi R., Maeda Y., Sander C., Garon E.B., Merghoub T., Wolchok J.D., Schumacher T.N., Chan T.A. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015. 348(6230): 124. https://doi.org/10.1126/science.aaa1348

Chowell D., Morris L.G.T., Grigg C.M., Weber J.K., Samstein R.M., Makarov V., Kuo F., Kendall S.M., Requena D., Riaz N., Greenbaum B., Carroll J., Garon E., Hyman D.M., Zehir A., Solit D., Berger M., Zhou R., Rizvi N.A., Chan T.A. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science. 2018. 359(6375): 582. https://doi.org/10.1126/science.aao4572

Routy B., Le Chatelier E., Derosa L., Duong C.P.M., Alou M.T., Daillère R., Fluckiger A., Messaoudene M., Rauber C., Roberti M.P., Fidelle M., Flament C., Poirier-Colame V., Opolon P., Klein C., Iribarren K., Mondragón L., Jacquelot N., Qu B., Ferrere G., Clémenson C., Mezquita L., Masip J.R., Naltet C., Brosseau S., Kaderbhai C., Richard C., Rizvi H., Levenez F., Galleron N., Quinquis B., Pons N., Ryffel B., Minard-Colin V., Gonin P., Soria J.C., Deutsch E., Loriot Y., Ghiringhelli F., Zalcman G., Goldwasser F., Escudier B., Hellmann M.D., Eggermont A., Raoult D., Albiges L., Kroemer G., Zitvogel L. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018. 359(6371): 91. https://doi.org/10.1126/science.aan3706

Mariathasan S., Turley S.J., Nickles D., Castiglioni A., Yuen K., Wang Y., Kadel E.E. III, Koeppen H., Astarita J.L., Cubas R., Jhunjhunwala S., Banchereau R., Yang Y., Guan Y., Chalouni C., Ziai J., Şenbabaoğlu Y., Santoro S., Sheinson D., Hung J., Giltnane J.M., Pierce A.A., Mesh K., Lianoglou S., Riegler J., Carano R.A.D., Eriksson P., Höglund M., Somarriba L., Halligan D.L., van der Heijden M.S., Loriot Y., Rosenberg J.E., Fong L., Mellman I., Chen D.S., Green M., Derleth C., Fine G.D., Hegde P.S., Bourgon R., Powles T. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018. 554(7693): 544. https://doi.org/10.1038/nature25501

Postow M.A., Sidlow R., Hellmann M.D. Immune-Related Adverse Events Associated with Immune Checkpoint Blockade. N. Engl. J. Med. 2018. 378(2): 158. https://doi.org/10.1056/NEJMra1703481

Liskovych M. Nobel Prize in Medicine is a forward step in immunotherapy of cancer. Rather costly yet... https://www.ukrinform.ua/rubric-society/2551020-nobel-z-medicini-ce-krok-vpered-v-imunoterapii-raku-nedesevij-poki-so.html]

Fang F., Xiao W., Tian Z. NK cell-based immunotherapy for cancer. Semin. Immunol. 2017. 31: 37. https://doi.org/10.1016/j.smim.2017.07.009

Mulcahy N. FDA Approves provenge, the first immunotherapy for metastatic prostate cancer. https://www.medscape.com/viewarticle/721014

Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine. Anticancer autovaccinum.. http://iepor.org.ua/innovations/anticancer-autovaccinum.html

Kranz L.M., Diken M., Haas H., Kreiter S., Loquai C., Reuter K.C., Meng M., Fritz D., Vascotto F., Hefesha H., Grunwitz C., Vormehr M., Hüsemann Y., Selmi A., Kuhn A.N., Buck J., Derhovanessian E., Rae R., Attig S., Diekmann J., Jabulowsky R.A., Heesch S., Hassel J., Langguth P., Grabbe S., Huber C., Türeci Ö., Sahin U. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature. 2016. 534(7607): 396. https://doi.org/10.1038/nature18300

Oleinik E.S., Labyntsev A.Yu., Manoylov K.Yu., Kolibo D.V., Komisarenko S.V. Immunoliposomes for the targeted delivery of biologically active compounds into the cells of tumor tissues. In: Nano-Sized Systems and Nanomaterials: Research in Ukraine. (Kyiv: Akademperiodyka, 2014). P. 510–514.

Zaroff S. CAR T-Cell Therapies with a Bispecific Twist. Tutorials. 2018. 38(13)). https://www.genengnews.com/magazine/car-t-cell-therapies-with-a-bispecific-twist/

##submission.downloads##

Опубліковано

2019-02-21