Для чого потрібні циркадні ритми, або як змінити хід «біологічного годинника»

Нобелівська премія з фізіології і медицини 2017 року

Автор(и)

  • Світлана Іванівна Романюк кандидат біологічних наук, старший науковий співробітник Інституту біохімії ім. О.В. Палладіна НАН України
  • Сергій Васильович Комісаренко академік НАН України, директор Інституту біохімії ім. О.В. Палладіна НАН України

DOI:

https://doi.org/10.15407/visn2017.12.050

Анотація

2 жовтня Нобелівський комітет при Каролінському медичному інституті оголосив імена лауреатів Нобелівської премії з фізіології і медицини за 2017 рік. Ними стали троє американських учених: Джеффрі Холл (Jeffrey C. Hall), Майкл Росбаш (Michael Rosbash) і Майкл Янг (Michael W. Young). Нагороду їм присуджено «за відкриття молекулярних механізмів, що контролюють циркадний ритм».

Посилання

The 2017 Clarivate Citation Laureates. https://clarivate.com/2017-citation-laureates/

The Nobel Prize in Physiology or Medicine 2017. Press Release. https://www.nobelprize.org/nobel_prizes/medicine/laureates/2017/press.html

Circadian rhythm. From Wikipedia. https://en.wikipedia.org/wiki/Circadian_rhythm

Circadian rhythm https://wikivisually.com/lang-ru/wiki/Циркадный_ритм

Sulzman F.M., Ellman D., Fuller C.A., Moore-Ede M.C., Wassmer G. Neurospora circadian rhythms in space: a reexamination of the endogenous-exogenous question. Science. 1984. 225: 232. http://www.jstor.org/stable/1693133

Halberg F. Chronobiology. Annu. Rev. Physiol. 1969. 31: 675. https://doi.org/10.1146/annurev.ph.31.030169.003331

Konopka R.J., Benzer S. Clock mutants of Drosophila melanogaster. Proc. Nat. Acad. Sci. USA. 1971. 68(9): 2112. http://dx.doi.org/10.1073/pnas.68.9.2112

Reddy P., Zehring W.A., Wheeler D.A., Pirrotta V., Hadfield C., Hall J.C., Rosbash M. Molecular analysis of the period locus in Drosophila melanogaster and identification of a transcript involved in biological rhythms. Cell. 1984. 38(3): 701. http://dx.doi.org/10.1016/0092-8674(84)90265-4

Bargiello T.A., Jackson F.R., Young M.W. Restoration of circadian behavioral rhythms by gene transfer in Drosophila. Nature. 1984. 312(5996): 752.https://doi.org/10.1038/312752a0

Zehring W.A., Wheeler D.A., Reddy P., Konopka R.J., Kyriacou C.P., Rosbash M., Hall J.C. P-element transformation with period locus DNA restores rhythmicity to mutant, arrhythmic Drosophila melanogaster. Cell. 1984. 39(2): 369. http://dx.doi.org/10.1016/0092-8674(84)90015-1

Hardin P.E., Hall J.C., Rosbash M. Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature. 1990. 343(6258): 536. http://dx.doi.org/10.1038/343536a0

Liu X., Zwiebel L.J., Hinton D., Benzer S., Hall J.C., Rosbash M.J. The period gene encodes a predominantly nuclear protein in adult Drosophila. Neuroscience. 1992. 12(7): 2735.

Sehgal A., Price J.L., Man B., Young M.W. Loss of circadian behavioral rhythms and per RNA oscillations in the Drosophila mutant timeless. Science. 1994. 263(5153): 1603. http://dx.doi.org/10.1126/science.8128246

Gekakis N., Saez L., Delahaye-Brown A.M., Myers M.P., Sehgal A., Young M.W., Weitz C.J. Isolation of timeless by PER protein interaction: defective interaction between timeless protein and long-period mutant PERL. Science. 1995. 270(5237): 811. http://dx.doi.org/10.1126/science.270.5237.811

Myers M.P., Wager-Smith K., Rothenfluh-Hilfiker A., Young M.W. Light-induced degradation of TIMELESS and entrainment of the Drosophila circadian clock. Science. 1996. 271(5256): 1736. http://dx.doi.org/10.1126/science.271.5256.1736

Allada R., White N.E., So W.V., Hall J.C., Rosbash M. A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless. Cell. 1998. 93(5): 791. http://dx.doi.org/10.1016/S0092-8674(00)81440-3n

Rutila J.E., Suri V., Le M., So W.V., Rosbash M., Hall J.C. CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell. 1998. 93(5): 805. http://dx.doi.org/10.1016/S0092-8674(00)81441-5

King D.P., Zhao Y., Sangoram A.M., Wilsbacher L.D., Tanaka M., Antoch M.P., Steeves T.D., Vitaterna M.H., Kornhauser J.M., Lowrey P.L., Turek F.W., Takahashi J.S. Positional cloning of the mouse circadian clock gene. Cell. 1997. 89(4): 641. http://dx.doi.org/10.1016/S0092-8674(00)80245-7

Hao H., Allen D.L., Hardin P.E. A circadian enhancer mediates PER-dependent mRNA cycling in Drosophila melanogaster. Mol. Cell Biol. 1997. 17(7): 3687. http://dx.doi.org/10.1128/MCB.17.7.3687

Ephrussi A., Church G.M., Tonegawa S., Gilbert W. B lineage--specific interactions of an immunoglobulin enhancer with cellular factors in vivo. Science. 1985. 227(4683): 134. http://dx.doi.org/10.1126/science.3917574

Emery P., So W.V., Kaneko M., Hall J.C., Rosbash M. CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell. 1998. 95(5): 669. http://dx.doi.org/10.1016/S0092-8674(00)81637-2

Ceriani M.F., Darlington T.K., Staknis D., Mаs P., Petti A.A., Weitz C.J., Kay S.A. Light-dependent sequestration of TIMELESS by CRYPTOCHROME. Science. 1999. 285(5427): 553. http://dx.doi.org/10.1126/science.285.5427.553

Qin S., Yin H., Yang C., Dou Y., Liu Z., Zhang P., Yu H., Huang Y., Feng J., Hao J., Hao J., Deng L., Yan X., Dong X., Zhao Z., Jiang T., Wang H.W., Luo S.J., Xie C. A magnetic protein biocompass. Nat. Mater. 2016. 15(2): 217. http://dx.doi.org/10.1038/nmat4484

Price J.L., Blau J., Rothenfluh A., Abodeely M., Kloss B., Young M.W. Double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell. 1998. 94(1): 83. http://dx.doi.org/10.1016/S0092-8674(00)81224-6

Martinek S., Inonog S., Manoukian A.S., Young M.W. A role for the segment polarity gene shaggy/GSK-3 in the Drosophila circadian clock. Cell. 2001. 105(6): 769. http://dx.doi.org/10.1016/S0092-8674(01)00383-X

Lin J.M., Kilman V.L., Keegan K., Paddock B., Emery-Le M., Rosbash M., Allada R. A role for casein kinase 2alpha in the Drosophila circadian clock. Nature. 2002. 420(6917): 816. http://dx.doi.org/10.1038/nature01235

Blau J., Young M.W. Cycling vrille expression is required for a functional Drosophila clock. Cell. 1999. 99(6): 661. http://dx.doi.org/10.1016/S0092-8674(00)81554-8

Cyran S.A., Buchsbaum A.M., Reddy K.L., Lin M.C., Glossop N.R., Hardin P.E., Young M.W., Storti R.V., Blau J. vrille, Pdp1, and dClock form a second feedback loop in the Drosophila circadian clock. Cell. 2003. 112(3): 329. http://dx.doi.org/10.1016/S0092-8674(03)00074-6

Koh K., Zheng X., Sehgal A. JETLAG resets the Drosophila circadian clock by promoting light-induced degradation of TIMELESS. Science. 2006. 312(5781): 1809. http://dx.doi.org/10.1126/science.1124951

Pittendrigh C.S., Daan S. A functional analysis of circadian pacemakers in nocturnal rodents. V. Pacemaker structure: a clock for all seasons. J. Comp. Physiol. 1976. 106(2): 333. http://dx.doi.org/10.1007/BF01417860

Grima B., Chelot E., Xia R., Rouyer F. Morning and evening peaks of activity rely on different clock neurons of the Drosophila brain. Nature. 2004. 431(7010): 869. http://dx.doi.org/10.1038/nature02935

Park J.H., Hall J.C. Isolation and chronobiological analysis of a neuropeptide pigment-dispersing factor gene in Drosophila melanogaster. J. Biol. Rhythms. 1998. 13(3): 219. http://dx.doi.org/10.1177/074873098129000066

Collins B., Kane E.A., Reeves D.C., Akabas M.H., Blau J. Balance of activity between LN(v)s and glutamatergic dorsal clock neurons promotes robust circadian rhythms in Drosophila. Neuron. 2012. 74(4): 706. http://dx.doi.org/10.1016/j.neuron.2012.02.034

Hankins M.W., Peirson S.N., Foster R.G. Melanopsin: an exciting photopigment. Trends Neurosci. 2008. 31(1): 27. http://dx.doi.org/10.1016/j.tins.2007.11.002

Kursky M.D. The role of 5-hydroxytryptamine (serotonin) in bioenergetic processes: Ph.D (Biol.) thesis. Kyiv, 1971.

Serotonin vs melatonin or balance of nature https://kactaheda.livejournal.com/168608.html

Lowrey P.L., Takahashi J.S. Genetics of the mammalian circadian system: Photic entrainment, circadian pacemaker mechanisms, and posttranslational regulation. Annu. Rev. Genet. 2000. 34: 533. http://dx.doi.org/10.1146/annurev.genet.34.1.533

Nohales M.A., Kay S.A. Molecular mechanisms at the core of the plant circadian oscillator. Nat. Struct. Mol. Biol. 2016. 23(12): 1061. http://dx.doi.org/10.1038/nsmb.3327

Tauber E., Zordan M., Sandrelli F., Pegoraro M., Osterwalder N., Breda C., Daga A., Selmin A., Monger K., Benna C., Rosato E., Kyriacou C.P., Costa R. Natural selection favors a newly derived timeless allele in Drosophila melanogaster. Science. 2007. 316(5833): 1895. http://dx.doi.org/10.1126/science.1138412

Chacolla-Huaringa R., Moreno-Cuevas J., Trevino V., Scott S.P. Entrainment of Breast Cell Lines Results in Rhythmic Fluctuations of MicroRNAs. Int. J. Mol. Sci. 2017. 18(7): E1499. http://dx.doi.org/10.3390/ijms18071499

Feng D., Liu T., Sun Z., Bugge A., Mullican S.E., Alenghat T., Liu X.S., Lazar M.A. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science. 2011. 331(6022): 1315. http://dx.doi.org/10.1126/science.1198125

O’Neill J.S., Reddy A.B. Circadian clocks in human red blood cells. Nature. 2011. 469(7331): 498. http://dx.doi.org/10.1038/nature09702

Edgar R.S., Green E.W., Zhao Y., van Ooijen G., Olmedo M., Qin X., Xu Y., Pan M., Valekunja U.K., Feeney K.A., Maywood E.S., Hastings M.H., Baliga N.S., Merrow M., Millar A.J., Johnson C.H., Kyriacou C.P., O’Neill J.S., Reddy A.B. Peroxiredoxins are conserved markers of circadian rhythms. Nature. 2012. 485(7399): 459. http://dx.doi.org/10.1038/nature11088

Sehadova H., Glaser F.T., Gentile C., Simoni A., Giesecke A., Albert J.T., Stanewsky R. Temperature entrainment of Drosophila’s circadian clock involves the gene nocte and signaling from peripheral sensory tissues to the brain. Neuron. 2009. 64(2): 251. http://dx.doi.org/10.1016/j.neuron.2009.08.026

Chen C., Buhl E., Xu M., Croset V., Rees J.S., Lilley K.S., Benton R., Hodge J.J., Stanewsky R. Drosophila Ionotropic Receptor 25a mediates circadian clock resetting by temperature. Nature. 2015. 527(7579): 516. http://dx.doi.org/10.1038/nature16148

Simoni A., Wolfgang W., Topping M.P., Kavlie R.G., Stanewsky R., Albert J.T. A mechanosensory pathway to the Drosophila circadian clock. Science. 2014. 343(6170): 525. http://dx.doi.org/10.1126/science.1245710

Ozturk N., Ozturk D., Kavakli I.H., Okyar A. Molecular Aspects of Circadian Pharmacology and Relevance for Cancer Chronotherapy. Int. J. Mol. Sci. 2017. 18(10): E2168. http://dx.doi.org/10.3390/ijms18102168

Toh K.L., Jones C.R., He Y., Eide E.J., Hinz W.A., Virshup D.M., Ptаcek L.J., Fu Y.H. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science. 2001. 291(5506): 1040. http://dx.doi.org/10.1126/science.1057499

Patke A., Murphy P.J., Onat O.E., Krieger A.C., Ozcelik T., Campbell S.S., Young M.W. Mutation of the Human Circadian Clock Gene CRY1 in Familial Delayed Sleep Phase Disorder. Cell. 2017. 169(2): 203. http://dx.doi.org/10.1016/j.cell.2017.03.027

He Y., Jones C.R., Fujiki N., Xu Y., Guo B., Holder J.L. Jr., Rossner M.J., Nishino S., Fu Y.H. The transcriptional repressor DEC2 regulates sleep length in mammals. Science. 2009. 325(5942): 866. http://dx.doi.org/10.1126/science.1174443

Honma S., Kawamoto T., Takagi Y., Fujimoto K., Sato F., Noshiro M., Kato Y., Honma K. Dec1 and Dec2 are regulators of the mammalian molecular clock. Nature. 2002. 419(6909): 841. http://dx.doi.org/10.1016/B978-0-12-405943-6.00010-5

Goldfarb L.G., Petersen R.B., Tabaton M., Brown P., LeBlanc A.C., Montagna P., Cortelli P., Julien J., Vital C., Pendelbury W.W. Fatal familial insomnia and familial Creutzfeldt-Jakob disease: disease phenotype determined by a DNA polymorphism. Science. 1992. 258(5083): 806. http://dx.doi.org/10.1126/science.1439789

Roenneberg T., Merrow M. The Circadian Clock and Human Health. Curr. Biol. 2016. 26(10): R432. http://dx.doi.org/10.1016/j.cub.2016.04.011

Panda S. Circadian physiology of metabolism. Science. 2016. 354(6315): 1008. http://dx.doi.org/10.1126/science.aah4967

Nedeltcheva A.V., Scheer F.A. Metabolic effects of sleep disruption, links to obesity and diabetes. Curr. Opin. Endocrinol. Diabetes Obes. 2014. 21(4): 293. http://dx.doi.org/10.1097/MED.0000000000000082

James P., Bertrand K.A., Hart J.E., Schernhammer E.S., Tamimi R.M., Laden F. Outdoor Light at Night and Breast Cancer Incidence in the Nurses’ Health Study II. Environ. Health Perspect. 2017. 125(8): 087010. http://dx.doi.org/10.1289/EHP935

Huffington A. The Sleep Revolution. Transforming Your Life, One Night at a Time. (Harmony, 2016).

Hatori M., Gronfier C., Van Gelder R.N., Bernstein P.S., Carreras J., Panda S., Marks F., Sliney D., Hunt C.E., Hirota T., Furukawa T., Tsubota K. Global rise of potential health hazards caused by blue light-induced circadian disruption in modern aging societies. NPJ Aging Mech. Dis. 2017. (3): 9. http://dx.doi.org/10.1038/s41514-017-0010-2

Hirota T., Kay S.A. Identification of small-molecule modulators of the circadian clock. Methods Enzymol. 2015. 551: 267. http://dx.doi.org/10.1016/bs.mie.2014.10.015

##submission.downloads##

Опубліковано

2017-12-21

Як цитувати

Романюк, С. І., & Комісаренко, С. В. (2017). Для чого потрібні циркадні ритми, або як змінити хід «біологічного годинника»: Нобелівська премія з фізіології і медицини 2017 року. Вісник Національної академії наук України, (12), 51–63. https://doi.org/10.15407/visn2017.12.050