Як клітинам вдається зберегти молекули ДНК неушкодженними, або завдяки чому існує життя на Землі?
Нобелівська премія з хімії 2015 р.
DOI:
https://doi.org/10.15407/visn2016.01.030Ключові слова:
ушкодження ДНК, системи репарації ДНК, Нобелівська преміяАнотація
7 жовтня 2015 р. у столиці Швеції Стокгольмі в рамках проведення 114-го Нобелівського тижня Нобелівським комітетом при Королівській академії наук Швеції в 107-й раз було оголошено імена лауреатів Нобелівської премії з хімії: Томаса Ліндаля (Tomas Lindahl), Пола Модрича (Paul Modric) і Азіза Санджара (Aziz Sancar). Ця нагорода є особливо престижною, оскільки засновник Нобелівських премій – шведський підприємець та винахідник Альфред Нобель (1833–1896) сам був хіміком і заробив свої статки завдяки винаходу динаміту. Хімія стала другою наукою після фізики, згаданою ним у заповіті.
Посилання
Forecasting the 2015 Nobel Prize winner. http://thomsonreuters.com/en/press-releases/2015/september/thomson-reuters-forecasts-nobel-prize-winners.html.
The 2015 Nobel Prize in Chemistry. Press Release. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2015/press.html.
Watson J.D., Crick F.H. The structure of DNA. Cold Spring Harb. Symp. Quant. Biol. 1953. 18: 123. http://doi.org/10.1101/SQB.1953.018.01.020
De Bont R., van Larebeke N. Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis. 2004. 19(3): 169. http://doi.org/10.1093/mutage/geh025
DNA damage (naturally occurring). https://en.wikipedia.org/wiki/DNA_damage_(naturally_occurring)#cite_note-31.
Gustafsson C.M. Mechanistic studies of DNA repair. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2015/advanced-chemistryprize2015.pdf.
Kelner A. Effect of visible light on the recovery of Streptomyces griseus conidia from ultra-violet irradiation injury. PNAS. 1949. 35: 73. http://doi.org/10.1073/pnas.35.2.73
Dulbecco R. Experiments on photoreactivation of bacteriophages inactivated with ultraviolet radiation. J. Bacteriol. 1950. 59(3): 329.
Rupert C.S. Photoreactivation of transforming DNA by an enzyme from bakers’ yeast. J. Gen. Physiol. 1960. 43(3): 573. http://doi.org/10.1085/jgp.43.3.573
Sancar A., Rupert C.S. Cloning of the phr gene and amplification of photolyase in Escherichia coli. Gene. 1978. 4(4): 295. http://doi.org/10.1016/0378-1119(78)90047-1
Park H.W., Kim S.T., Sancar A., Deisenhofer J. Crystal structure of DNA photolyase from Escherichia coli. Science. 1995. 268(5219): 1866. http://doi.org/10.1126/science.7604260
Setlow R.B., Carrier W.L. The disappearance of thymine dimers from DNA: an error-correcting mechanism. PNAS. 1964. 51: 226. http://doi.org/10.1073/pnas.51.2.226
Boyce R.P., Howard-Flanders P. Release of ultraviolet light-induced thymine dimers from DNA in E. coli K-12. PNAS. 1964. 51: 293. http://doi.org/10.1073/pnas.51.2.293
Pettijohn D., Hanawalt P. Evidence for repair-replication of ultraviolet damaged DNA in bacteria. J. Mol. Biol. 1964. 9: 395. http://doi.org/10.1016/S0022-2836(64)80216-3
Howard-Flanders P., Boyce R.P., Theriot L. Three loci in Escherichia coli K-12 that control the excision of pyrimidine dimers and certain other mutagen products from DNA. Genetics. 1966. 53(6): 1119.
Sancar A., Hack A.M., Rupp W.D. Simple method for identification of plasmid-coded proteins. J. Bacteriol. 1979. 137(1): 692.
Sancar A., Rupp W.D. A novel repair enzyme: UVRABC excision nuclease of Escherichia coli cuts a DNA strand on both sides of the damaged region. Cell. 1983. 33(1): 249. http://doi.org/10.1016/0092-8674(83)90354-9
Petit C., Sancar A. Nucleotide excision repair: from E. coli to man. Biochimie. 1999. 81(1–2): 15. http://doi.org/10.1016/S0300-9084(99)80034-0
Kato T.Jr., Todo T., Ayaki H., Ishizaki K., Morita T., Mitra S., Ikenaga M. Cloning of a marsupial DNA photolyase gene and the lack of related nucleotide sequences in placental mammals. Nucleic Acids Res. 1994. 22(20): 4119. http://doi.org/10.1093/nar/22.20.4119
Sancar A. Regulation of the mammalian circadian clock by cryptochrome. J. Biol. Chem. 2004. 279(33): 34079.http://doi.org/10.1074/jbc.R400016200
Wagner R.Jr., Meselson M. Repair tracts in mismatched DNA heteroduplexes. PNAS. 1976. 73(11): 4135. http://doi.org/10.1073/pnas.73.11.4135
Pukkila P.J., Peterson J., Herman G., Modrich P., Meselson M. Effects of high levels of DNA adenine methylation on methyl-directed mismatch repair in Escherichia coli. Genetics. 1983. 104(4): 571.
Lahue R.S, Au K.G., Modrich P. DNA mismatch correction in a defined system. Science. 1989. 245(4914): 160. http://doi.org/10.1126/science.2665076
Lindahl T., Nyberg B. Heat-induced deamination of cytosine residues in deoxyribonucleic acid. Biochemistry. 1974. 13(16): 3405. http://doi.org/10.1021/bi00713a035
Lindahl T. An N-glycosidase from Escherichia coli that releases free uracil from DNA containing deaminated cystosine residues. PNAS. 1974. 71(9): 3649. http://doi.org/10.1073/pnas.71.9.3649
Lindahl T. DNA glycosylases in DNA repair. Basic Life Sci. 1986. 38: 335. http://doi.org/10.1007/978-1-4615-9462-8_36
Schiller C.B., Seifert F.U., Linke-Winnebeck C., Hopfner K.P. Structural studies of DNA end detection and resection in homologous recombination. Cold Spring Harb. Perspect. Biol. 2014. 6(10): a017962. http://doi.org/10.1101/cshperspect.a017962
Waters C.A., Strande N.T., Wyatt D.W., Pryor J.M., Ramsden D.A. Nonhomologous end joining: a good solution for bad ends. DNA Repair. 2014. 17: 39. http://doi.org/10.1016/j.dnarep.2014.02.008
Sfeir A., Symington L.S. Microhomology-mediated end joining: a back-up survival mechanism or dedicated pathway? Trends Biochem. Sci. 2015. 40(11): 701. http://doi.org/10.1016/j.tibs.2015.08.006
Radman M. SOS repair hypothesis: phenomenology of an inducible DNA repair which is accompanied by mutagenesis. Basic Life Sci. 1975. 5A: 355. http://doi.org/10.1007/978-1-4684-2895-7_48
Witkin E.M. Elevated mutability of polA derivatives of Escherichia coli B/r at sublethal doses of ultraviolet light: evidence for an inducible error-prone repair system ("SOS repair") and its anomalous expression in these strains. Genetics. 1975. 79: 199.
Shinagawa H. SOS response as an adaptive response to DNA damage in prokaryotes. EXS. 1996. 77: 221. http://doi.org/10.1007/978-3-0348-9088-5_14
Knoch J., Kamenisch Y., Kubisch C., Berneburg M. Rare hereditary diseases with defects in DNA-repair. Eur. J. Dermatol. 2012. 22(4): 443.
Cleaver J.E. Defective repair replication of DNA in xeroderma pigmentosum. Nature. 1968. 218(5142): 652. http://doi.org/10.1038/218652a0
Parsons R., Li G.M., Longley M.J., Fang W.H., Papadopoulos N., Jen J., de la Chapelle A., Kinzler K.W., Vogelstein B., Modrich P. Hypermutability and mismatch repair deficiency in RER+ tumor cells. Cell. 1993. 75(6): 1227. http://doi.org/10.1016/0092-8674(93)90331-J
Chen L., Elahi A., Pow-Sang J., Lazarus P., Park J. Association between polymorphism of human oxoguanine glycosylase 1 and risk of prostate cancer. J. Urol. 2003. 170(6): 2471. http://doi.org/10.1097/01.ju.0000087498.23008.bb
FDA approves Lynparza to treat advanced ovarian cancer. http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm427554.htm.
Zetsche B., Gootenberg J., Abudayyeh O., Slaymaker I.M., Makarova K., Essletzbichler P., Volz S., Joung J., van der Oost J., Regev A., Koonin E., Zhang F. Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System. Cell. 2015. 163(3): 759. http://doi.org/10.1016/j.cell.2015.09.038
http://www.gazeta.ru/science/2015/10/07_a_7801073.shtml.
Meng H., Cao Y., Qin J., Song X., Zhang Q., Shi Y., Cao L. DNA methylation, its mediators and genome integrity. Int. J. Biol. Sci. 2015. 11(5): 604. http://doi.org/10.7150/ijbs.11218
Franchini D.M., Petersen-Mahrt S.K. AID and APOBEC deaminases: balancing DNA damage in epigenetics and immunity. Epigenomics. 2014. 6(4): 427. http://doi.org/10.2217/epi.14.35
Rada C., Williams G.T., Nilsen H., Barnes D.E., Lindahl T., Neuberger M.S. Immunoglobulin isotype switching is inhibited and somatic hypermutation perturbed in UNG-deficient mice. Curr. Biol. 2002. 12(20): 1748. http://doi.org/10.1016/S0960-9822(02)01215-0
Kornberg A. Some aspects of the enzymatic replication of DNA: the repair of partially single-stranded templates. Proc. Nat. Cancer Conf. 1964. 5: 735.