Механізми біологічної активності низькоінтенсивного радіочастотного випромінювання
DOI:
https://doi.org/10.15407/visn2016.02.073Ключові слова:
вільні радикали, оксидативний стрес, радіочастотне випромінювання, активні форми кисню, ушкодження ДНК, апоптозАнотація
Огляд присвячено аналізу експериментальних даних щодо біологічних ефектів низькоінтенсивного радіочастотного випромінювання. Наявні на сьогодні результати досліджень свідчать про те, що радіочастотне випромінювання нетеплових інтенсивностей, взаємодіючи з іонами і локальними зарядами макромолекул, може потенційно впливати на рівень метаболізму клітини, активізувати вільнорадикальні та пероксидні процеси, пригнічувати активність ензимів антиоксидантного захисту, призводити до окисного ушкодження ДНК. Наведені дані дають змогу класифікувати низькоінтенсивне радіочастотне випромінювання як стресовий/оксидативний чинник для клітини.
Посилання
Maes W. Stress caused by electromagnetic fields and radiation. (Neubeuern, 2005).
Hardell L., Carlberg M., Hansson M.K., Eriksson M. Case-control study on the use of mobile and cordless phones and the risk for malignant melanoma in the head and neck region. Pathophysiology. 2011. 18(4): 325. http://doi.org/10.1016/j.pathophys.2011.06.001
Hardell L., Carlberg M., Soderqvist F., Mild K.H., Morgan L.L. Long-term use of cellular phones and brain tumours: increased risk associated with use for > or =10 years. Occup. Environ. Med. 2007. 64(9): 626. http://doi.org/10.1136/oem.2006.029751
Sadetzki S., Chetrit A., Jarus-Hakak A., Cardis E., Deutch Y., Duvdevani S., Zultan A., Novikov I., Freedman L.,Wolf M. Cellular phone use and risk of benign and malignant parotid gland tumors a nationwide case-control study. Am. J. Epidemiol. 2008. 167(4): 457. http://doi.org/10.1093/aje/kwm325
Sato Y., Akiba S., Kubo O.,Yamaguchi N. A case-case study of mobile phone use and acoustic neuroma risk in Japan. Bioelectromagnetics. 2011. 32(2): 85. http://doi.org/10.1002/bem.20616
Abdel-Rassoul G., El-Fateh O.A., Salem M.A., Michael A., Farahat F., El-Batanouny M.,Salem E. Neurobehavioral effects among inhabitants around mobile phone base stations. Neurotoxicology. 2007. 28(2): 434. http://doi.org/10.1016/j.neuro.2006.07.012
Buchner K., Eger H. Changes of Clinically Important Neurotransmitters under the Influence of Modulated RF Fields.A Long-term Study under Real-life Conditions. Umwelt -Medizin-Gesellschaft. 2011. 24(1): 44.
Chu M.K., Song H.G., Kim C.,Lee B.C. Clinical features of headache associated with mobile phone use. a cross-sectional study in university students. BMC Neurol. 2011. 11: 115. http://doi.org/10.1186/1471-2377-11-115
Agarwal A., Desai N.R., Makker K., Varghese A., Mouradi R., Sabanegh E., Sharma R. Effects of radiofrequency electromagnetic waves (RF-EMW) from cellular phones on human ejaculated semen. an in vitro pilot study. Fertil. Steril. 2009. 92(4): 1318. http://doi.org/10.1016/j.fertnstert.2008.08.022
Guidelines for limiting exposure to time-varying elecrtic, magnetic and electromagnetic fields (up to 300 GHz). Health Phys. 1998. 74(4): .494.
Belyaev I. Dependence of non-thermal biological effects of microwaves on physical and biological variables. implications for reproducibility and safety standards. Eur. J. Oncol. Library. 2010. 5: 187.
Consales C., Merla C., Marino C., Benassi B. Electromagnetic fields, oxidative stress, and neurodegeneration. Int. J. Cell Biol. 2012. 683897. http://doi.org/10.1155/2012/683897
Desai N.R., Kesari K.K., Agarwal A. Pathophysiology of cell phone radiation: oxidative stress and carcinogenesis with focus on male reproductive system. Reprod. Biol. Endocrinol. 2009. 7: 114. http://doi.org/10.1186/1477-7827-7-114
Yakymenko I., Sidorik E., Tsybulin O. Metabolic changes in living cells under electromagnetic radiation of mobile communication systems. Ukrainian Biochem. J. 2011. 83(2): 5. [in Russian].
Hyland G.J. Physics and biology of mobile telephony. Lancet. 2000. 356(9244): 1833. http://doi.org/10.1016/S0140-6736(00)03243-8
Gandhi O.P., Morgan L.L., de Salles A.A., Han Y.Y., Herberman R.B., Davis D.L. Exposure limits. the underestimation of absorbed cell phone radiation, especially in children. Electromagn. Biol. Med. 2012. 31(1): 34. http://doi.org/10.3109/15368378.2011.622827
Panagopoulos D.J., Karabarbounis A., Margaritis L.H. Mechanism for action of electromagnetic fields on cells. Biochem. Biophys. Res. Commun. 2002. 298(1): 95. http://doi.org/10.1016/S0006-291X(02)02393-8
Goodman R., Blank M. Insights into electromagnetic interaction mechanisms. J. Cell Physiol. 2002. 192(1): 16. http://doi.org/10.1002/jcp.10098
Blank M., Soo L. Electromagnetic acceleration of electron transfer reactions. J. Cell Biochem. 2001. 81(2): 278. http://doi.org/10.1002/1097-4644(20010501)81:2<278::AID-JCB1042>3.0.CO;2-F
Blank M., Soo L. Electromagnetic acceleration of the Belousov-Zhabotinski reaction. Bioelectrochemistry. 2003. 61(1): 93. http://doi.org/10.1016/j.bioelechem.2003.09.001
Marino A.A., Carrubba S., Frilot C.,Chesson A.L. Evidence that transduction of electromagnetic field is mediated by a force receptor. Neurosci. Lett. 2009. 452(2): 119. http://doi.org/10.1016/j.neulet.2009.01.051
Georgiou C.D. Oxidative stress-induced biological damage by low-level EMFs. Eur. J. Oncol. 2010. 5: 63.
Céspedes O., Ueno S. Effects of radio frequency magnetic fields on iron release from cage proteins. Bioelectromagnetics. 2009. 30(5): 336. http://doi.org/10.1002/bem.20488
Zmyslony M., Politanski P., Rajkowska E., Szymczak W., Jajte J. Acute exposure to 930 MHz CW electromagnetic radiation in vitro affects reactive oxygen species level in rat lymphocytes treated by iron ions. Bioelectromagnetics. 2004. 25(5): 324. http://doi.org/10.1002/bem.10191
Bohr H., Bohr J. Microwave-enhanced folding and denaturation of globular proteins. Phys. Rev. E. 2000. 61: 4310. http://doi.org/10.1103/PhysRevE.61.4310
Budi A., Legge F.S., Treutlein H.,Yarovsky I. Effect of frequency on insulin response to electric field stress. J. Phys. Chem. B. 2007. 111(20): 5748. http://doi.org/10.1021/jp067248g
Pavicic I., Trosic I. Interaction of GSM modulated RF radiation and macromolecular cytoskeleton structures. In: Biological Effects of Electromagnetic Fields: Proc. 6th Int. Workshop (10–14 Oct. 2010, Bodrum, Turkey).
Hoyto A., Juutilainen J.,Naarala J. Ornithine decarboxylase activity is affected in primary astrocytes but not in secondary cell lines exposed to 872 MHz RF radiation. Int. J. Radiat. Biol. 2007. 83(6): 367. http://doi.org/10.1080/09553000701317341
Pall M.L. Electromagnetic fields act via activation of voltage-gated calcium channels to produce beneficial or adverse effects. J. Cell. Mol. Med. 2013. 17(8): 958. http://doi.org/10.1111/jcmm.12088
Vaks V.L., Domrachev G.A., Rodygin Y.L., Selivanovskii D.A.,Spivak E.I. Dissociation of water by microwave radiation. Radiophys. Quantum Electron. 1994. 37(1): 85. http://doi.org/10.1007/BF01039308
Halliwell B. Biochemistry of oxidative stress. Biochem. Soc. Trans. 2007. 35: 1147. http://doi.org/10.1042/BST0351147
Halliwell B. Reactive oxygen species in living systems. source, biochemistry, and role in human disease. Am. J. Med. 1991. 91(3): 14S. http://doi.org/10.1016/0002-9343(91)90279-7
Halliwell B., Gutteridge J.M. Biologically relevant metal ion-dependent hydroxyl radical generation. FEBS Lett. 1992. 307(1): 108. http://doi.org/10.1016/0014-5793(92)80911-Y
Halliwell B., Gutteridge J M. The importance of free radicals and catalytic metal ions in human diseases. Mol. Aspects Med. 1985. 8(2): 89. http://doi.org/10.1016/0098-2997(85)90001-9
Halliwell B. Oxidants and human disease: some new concepts. FASEB J. 1987. 1(5): 358.
Gutteridge J.M. Hydroxyl radicals, iron, oxidative stress, and neurodegeneration. Ann. N. Y. Acad. Sci. 1994. 738: 201. http://doi.org/10.1111/j.1749-6632.1994.tb21805.x
Feig D.I., Reid T.M., Loeb L.A. Reactive oxygen species in tumorigenesis. Cancer Res. 1994. 54: 1890s.
Mates J.M. Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology. 2000. 153(1): 83. http://doi.org/10.1016/S0300-483X(00)00306-1
Friedman J., Kraus S., Hauptman Y., Schiff Y.,Seger R. Mechanism of short-term ERK activation by electromagnetic fields at mobile phone frequencies. Biochem. J. 2007. 405(3): 559. http://doi.org/10.1042/BJ20061653
Griendling K.K., Sorescu D., Ushio-Fukai M. NAD(P)H oxidase. role in cardiovascular biology and disease. Circ. Res. 2000. 86(5): 494. http://doi.org/10.1161/01.RES.86.5.494
Low H., Crane F.L., Morre D.J. Putting together a plasma membrane NADH oxidase. Int. J. Biochem. Cell Biol. 2012. 44(11): 1834. http://doi.org/10.1016/j.biocel.2012.06.032
Inoue M., Sato E.F., Nishikawa M., Park A.M., Kira Y., Imada I., Utsumi K. Mitochondrial generation of reactive oxygen species and its role in aerobic life. Curr. Med. Chem. 2003. 10(23): 2495. http://doi.org/10.2174/0929867033456477
De Iuliis G.N., Newey R.J., King B.V., Aitken R.J. Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro. PLoS One. 2009. 4(7): e6446. http://doi.org/10.1371/journal.pone.0006446
Burlaka A., Tsybulin O., Sidorik E., Lukin S., Polishuk V., Tsehmistrenko S., Yakymenko I. Overproduction of free radical species in embryonal cells exposed to low intensity radiofrequency radiation. Exp. Oncol. 2013. 35(3): 219.
Liu Y., Fiskum G., Schubert D. Generation of reactive oxygen species by the mitochondrial electron transport chain. J. Neurochem. 2002. 80(5): 780. http://doi.org/10.1046/j.0022-3042.2002.00744.x
Guzy R.D., Schumacker P.T. Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp. Physiol. 2006. 91(5): 807. http://doi.org/10.1113/expphysiol.2006.033506
Wang X., Sharma R.K., Gupta A., George V., Thomas Jr. A.J., Falcone T., Agarwal A. Alterations in mitochondria membrane potential and oxidative stress in infertile men: a prospective observational study. Fertil. Steril. 2003. 80: 844. http://doi.org/10.1016/S0015-0282(03)00983-X
Ott M., Gogvadze V., Orrenius S., Zhivotovsky B. Mitochondria, oxidative stress and cell death. Apoptosis. 2007. 12(5): 913. http://doi.org/10.1007/s10495-007-0756-2
Caraglia M., Marra M., Mancinelli F., D'Ambrosio G., Massa R., Giordano A., Budillon A., Abbruzzese A., Bismuto E. Electromagnetic fields at mobile phone frequency induce apoptosis and inactivation of the multi-chaperone complex in human epidermoid cancer cells. J. Cell Physiol. 2005. 204(2): 539. http://doi.org/10.1002/jcp.20327
Zhao T.Y., Zou S.P.,Knapp P.E. Exposure to cell phone radiation up-regulates apoptosis genes in primary cultures of neurons and astrocytes. Neurosci. Lett. 2007. 412(1): 34. http://doi.org/10.1016/j.neulet.2006.09.092
Yakymenko I., Tsybulin O., Sidorik E., Henshel D., Kyrylenko O., Kyrylenko S. Oxidative mechanisms of biological activity of low intensity radiofrequency radiation. Electromag. Biol. Med. 2015. PMID: 26151230.
Avci B., Akar A., Bilgici B.,Tuncel O.K. Oxidative stress induced by 1.8 GHz radio frequency electromagnetic radiation and effects of garlic extract in rats. Int. J. Radiat. Biol. 2012. 88(11): 799. http://doi.org/10.3109/09553002.2012.711504
Bilgici B., Akar A., Avci B.,Tuncel O.K. Effect of 900 MHz radiofrequency radiation on oxidative stress in rat brain and serum. Electromagn. Biol. Med. 2013. 32(1): 20. http://doi.org/10.3109/15368378.2012.699012
Ozguner F., Bardak Y.,Comlekci S. Protective effects of melatonin and caffeic acid phenethyl ester against retinal oxidative stress in long-term use of mobile phone. a comparative study. Mol. Cell Biochem. 2006. 282(1): 83. http://doi.org/10.1007/s11010-006-1267-0
Jelodar G., Akbari A., Nazifi S. The prophylactic effect of vitamin C on oxidative stress indexes in rat eyes following exposure to radiofrequency wave generated by a BTS antenna model. Int. J Radiat. Biol. 2013. 89(2): 128. http://doi.org/10.3109/09553002.2012.721051
Oral B., Guney M., Ozguner F., Karahan N., Mungan T., Comlekci S., Cesur G. Endometrial apoptosis induced by a 900-MHz mobile phone. preventive effects of vitamins E and C. Adv. Ther. 2006. 23(6): 957. http://doi.org/10.1007/BF02850217
Turker Y., Naziroglu M., Gumral N., Celik O., Saygin M., Comlekci S., Flores-Arce M. Selenium and L-carnitine reduce oxidative stress in the heart of rat induced by 2.45-GHz radiation from wireless devices. Biol. Trace Elem. Res. 2011. 143(3): 1640. http://doi.org/10.1007/s12011-011-8994-0
Oksay T., Naziroğlu M., Doğan S., Güzel A., Gümral N., Koşar P.A. Protective effects of melatonin against oxidative injury in rat testis induced by wireless (2.45 GHz) devices. Andrologia. 2014. 46(1): 65. http://doi.org/10.1111/and.12044
Guidelines on limits of exposure to static magnetic fields. Health Phys. 2009. 96: 504. http://doi.org/10.1097/01.HP.0000343164.27920.4a
Hong M.N., Kim B.C., Ko Y.G., Lee Y.S., Hong S.C., Kim T., Pack J.K., Choi H.D., Kim N., Lee J.S. Effects of 837 and 1950 MHz radiofrequency radiation exposure alone or combined on oxidative stress in MCF10A cells. Bioelectromagnetics. 2012. 33(7): 604. http://doi.org/10.1002/bem.21731
Kang K.A., Lee H.C., Lee J.J., Hong M.N., Park M.J., Lee Y.S., Choi H.D., Kim N., Ko Y.G., Lee J.S. Effects of combined radiofrequency radiation exposure on levels of reactive oxygen species in neuronal cells. J. Radiat. Res. 2014. 55(2): 265. http://doi.org/10.1093/jrr/rrt116
Luukkonen J., Hakulinen P., Maki-Paakkanen J., Juutilainen J., Naarala J. Enhancement of chemically induced reactive oxygen species production and DNA damage in human SH-SY5Y neuroblastoma cells by 872 MHz radiofrequency radiation. Mutat. Res. 2009. 662(1): 54. http://doi.org/10.1016/j.mrfmmm.2008.12.005
Ruediger H.W. Genotoxic effects of radiofrequency electromagnetic fields. Pathophysiology. 2009. 16 89. http://doi.org/10.1016/j.pathophys.2008.11.004
Garaj-Vrhovac V., Fucic A., Horvat D. The correlation between the frequency of micronuclei and specific chromosome aberrations in human lymphocytes exposed to microwave radiation in vitro. Mutat. Res. 1992. 281(2): 181. http://doi.org/10.1016/0165-7992(92)90006-4
Tice R.R., Hook G.G., Donner M., McRee D.I., Guy A.W. Genotoxicity of radiofrequency signals. I. Investigation of DNA damage and micronuclei induction in cultured human blood cells. Bioelectromagnetics. 2002. 23(2): 113. http://doi.org/10.1002/bem.104
Zotti-Martelli L., Peccatori M., Maggini V., Ballardin M., Barale R. Individual responsiveness to induction of micronuclei in human lymphocytes after exposure in vitro to 1800-MHz microwave radiation. Mutat. Res. 2005. 582(1): 42. http://doi.org/10.1016/j.mrgentox.2004.12.014
Garson O.M., McRobert T.L., Campbell L.J., Hocking B.A., Gordon I. A chromosomal study of workers with long-term exposure to radio-frequency radiation. Med. J. Aust. 1991. 155(5): 289.
Kerbacher J.J., Meltz M.L., Erwin D.N. Influence of radiofrequency radiation on chromosome aberrations in CHO cells and its interaction with DNA-damaging agents. Radiat. Res. 1990. 123(3): 311. http://doi.org/10.2307/3577738
Maes A., Collier M.,Verschaeve L. Cytogenetic investigations on microwaves emitted by a 455.7 MHz car phone. Folia Biol. 2000. 46(5): 175.
Baohong W., Jiliang H., Lifen J., Deqiang L., Wei Z., Jianlin L., Hongping D. Studying the synergistic damage effects induced by 1.8 GHz radiofrequency field radiation (RFR) with four chemical mutagens on human lymphocyte DNA using comet assay in vitro. Mutat. Res. 2005. 578(1): 149. http://doi.org/10.1016/j.mrfmmm.2005.05.001
Belyaev I.Y., Koch C.B., Terenius O., Roxstrom-Lindquist K., Malmgren L.O., W HS, Salford L.G., Persson B.R. Exposure of rat brain to 915 MHz GSM microwaves induces changes in gene expression but not double stranded DNA breaks or effects on chromatin conformation. Bioelectromagnetics. 2006. 27(4): 295. http://doi.org/10.1002/bem.20216
Diem E., Schwarz C., Adlkofer F., Jahn O.,Rudiger H. Non-thermal DNA breakage by mobile-phone radiation (1800 MHz) in human fibroblasts and in transformed GFSH-R17 rat granulosa cells in vitro. Mutat. Res. 2005. 583(2): 178. http://doi.org/10.1016/j.mrgentox.2005.03.006
Kim J.Y., Hong S.Y., Lee Y.M., Yu S.A., Koh W.S., Hong J.R., Son T., Chang S.K., Lee M. In vitro assessment of clastogenicity of mobile-phone radiation (835 MHz) using the alkaline comet assay and chromosomal aberration test. Environ. Toxicol. 2008. 23(3): 319. http://doi.org/10.1002/tox.20347
Lai H., Singh N.P. Single- and double-strand DNA breaks in rat brain cells after acute exposure to radiofrequency electromagnetic radiation. Int. J. Radiat. Biol. 1996. 69(4): 513. http://doi.org/10.1080/095530096145814
Liu C., Duan W., Xu S., Chen C., He M., Zhang L., Yu Z., Zhou Z. Exposure to 1800 MHz radiofrequency electromagnetic radiation induces oxidative DNA base damage in a mouse spermatocyte-derived cell line. Toxicol. Lett. 2013. 218(1): 2. http://doi.org/10.1016/j.toxlet.2013.01.003
Guler G., Tomruk A., Ozgur E., Sahin D., Sepici A., Altan N., Seyhan N. The effect of radiofrequency radiation on DNA and lipid damage in female and male infant rabbits. Int. J. Radiat. Biol. 2012. 88(4): 367. http://doi.org/10.3109/09553002.2012.646349
Khalil A.M., Gagaa M.H.,Alshamali A.M. 8-Oxo-7, 8-dihydro-2'-deoxyguanosine as a biomarker of DNA damage by mobile phone radiation. Hum. Exp. Toxicol. 2012. 31(7): 734. http://doi.org/10.1177/0960327111433184
Xu S., Zhou Z., Zhang L., Yu Z., Zhang W., Wang Y., Wang X., Li M., Chen Y., Chen C., He M., Zhang G., Zhong M. Exposure to 1800 MHz radiofrequency radiation induces oxidative damage to mitochondrial DNA in primary cultured neurons. Brain Res. 2010. 1311: 189. http://doi.org/10.1016/j.brainres.2009.10.062
Halliwell B. Oxidative stress and cancer. have we moved forward? Biochem. J. 2007. 401(1): 1. http://doi.org/10.1042/BJ20061131
Valko M., Leibfritz D., Moncol J., Cronin M.T., Mazur M.,Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007. 39(1): 44. http://doi.org/10.1016/j.biocel.2006.07.001
Valko M., Rhodes C.J., Moncol J., Izakovic M., Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 2006. 160(1): 1. http://doi.org/10.1016/j.cbi.2005.12.009
Forman H.J., Ursini F., Maiorino M. An overview of mechanisms of redox signaling. J. Mol. Cell. Cardiol. 2014. 73(2): 9. http://doi.org/10.1016/j.yjmcc.2014.01.018
Sies H. Role of metabolic H2O2 generation: redox signaling and oxidative stress. J. Biol. Chem. 2014. 289(13): 8735. http://doi.org/10.1074/jbc.R113.544635
Oshino N., Jamieson D., Sugano T., Chance B. Optical measurement of the catalase-hydrogen peroxide intermediate (Compound I) in the liver of anaesthetized rats and its implication to hydrogen peroxide production in situ. Biochem. J. 1975. 146(1): 67. http://doi.org/10.1042/bj1460067
Enyedi B., Niethammer P. H2O2 a chemoattractant? Methods Enzymol. 2013. 528: 237. http://doi.org/10.1016/B978-0-12-405881-1.00014-8
Hayden M.S.,Ghosh S. NF-kappaB in immunobiology. Cell Res. 2011. 21(2): 223. http://doi.org/10.1038/cr.2011.13
Tsybulin O., Sidorik E., Kyrylenko S., Henshel D., Yakymenko I. GSM 900 MHz microwave radiation affects embryo development of Japanese quails. Electromagn. Biol. Med. 2012. 31(1): 75. http://doi.org/10.3109/15368378.2011.624656
Tsybulin O., Sidorik E., Brieieva O., Buchynska L., Kyrylenko S., Henshel D.,Yakymenko I. GSM 900 MHz cellular phone radiation can either stimulate or depress early embryogenesis in Japanese quails depending on the duration of exposure. Int. J. Radiat. Biol. 2013. 89(9): 756. http://doi.org/10.3109/09553002.2013.791408
Calabrese E.J. Hormesis: why it is important to toxicology and toxicologists. Environ. Toxicol. Chem. 2008. 27(7): 1451. http://doi.org/10.1897/07-541.1
Johansson O. Electrohypersensitivity: state-of-the-art of a functional impairment. Electromagn. Biol. Med. 2006. 25(4): 245. http://doi.org/10.1080/15368370601044150
Hallberg O., Oberfeld G. Letter to the editor: will we all become electrosensitive? Electromagn. Biol. Med. 2006. 25(3): 189.
Yakymenko I., Sidorik E., Tsybulin O., Chekhun V. Potential risks of microwaves from mobile phones for youth health. Environ. Health. 2011. 56: 48.
Santini R., Santini P., Danze J.M., Ruz P.L.,Seigne M. Study of the health of people living in the vicinity of mobile phone base stations. Influences of distance and sex. Pathol. Biol. 2002. 50(6): 369. http://doi.org/10.1016/S0369-8114(02)00311-5
Johansson O., Gangi S., Liang Y., Yoshimura K., Jing C., Liu P.-Y. Cutaneous mast cells are altered in normal healthy volunteers sitting in front of ordinary TVs/PCs – results from open-field provocation experiments. J. Cutan. Pathol. 2001. 28(10): 513. http://doi.org/10.1034/j.1600-0560.2001.281004.x
Nagata M. Inflammatory cells and oxygen radicals. Curr. Drug Targets Inflamm. Allergy. 2005. 4(4): 503. http://doi.org/10.2174/1568010054526322
Okayama Y. Oxidative stress in allergic and inflammatory skin diseases. Curr. Drug Targets Inflamm. Allergy. 2005. 4(4): 517. http://doi.org/10.2174/1568010054526386
Boldogh I., Bacsi A., Choudhury B.K., Dharajiya N., Alam R., Hazra T.K., Mitra S., Goldblum R.M., Sur S. ROS generated by pollen NADPH oxidase provide a signal that augments antigen-induced allergic airway inflammation. J. Clin. Invest. 2005. 115(8): 2169. http://doi.org/10.1172/JCI24422
Yakymenko I., Sidorik E., Kyrylenko S., Chekhun V. Long-term exposure to microwave radiation provokes cancer growth: evidences from radars and mobile communication systems. Exp. Oncol. 2011. 33(2): 62.
Wolf R.,Wolf D. Increased incidence of cancer near a cell-phone transmitted station. In: Trends in cancer prevention. (Nova Sci. Pub. Inc., 2007).
Repacholi M.H., Basten A., Gebski V., Noonan D, Finnie J., Harris A.W. Lymphomas in E mu-Pim1 transgenic mice exposed to pulsed 900 MHZ electromagnetic fields. Radiat. Res. 1997. 147(5): 631. http://doi.org/10.2307/3579630
Hoyto A., Juutilainen J., Naarala J. Ornithine decarboxylase activity of L929 cells after exposure to continuous wave or 50 Hz modulated radiofrequency radiation--a replication study. Bioelectromagnetics. 2007. 28(7): 501. http://doi.org/10.1002/bem.20337
Clifford A., Morgan D., Yuspa S.H., Soler A.P., Gilmour S. Role of ornithine decarboxylase in epidermal tumorigenesis. Cancer Res. 1995. 55(8): 1680.
Nguyen H.L., Zucker S., Zarrabi K., Kadam P., Schmidt C., Cao J. Oxidative stress and prostate cancer progression are elicited by membrane-type 1 matrix metalloproteinase. Mol. Cancer Res. 2011. 9(10): 1305. http://doi.org/10.1158/1541-7786.MCR-11-0033
Ralph S.J., Rodríguez-Enríquez S., Neuzil J., Saavedra E., Moreno-Sánchez R. The causes of cancer revisited. “Mitochondrial malignancy” and ROS-induced oncogenic transformation.Why mitochondria are targets for cancer therapy. Mol. Aspects Med. 2010. 31(2): 145. http://doi.org/10.1016/j.mam.2010.02.008