Механізми біологічної активності низькоінтенсивного радіочастотного випромінювання

Автор(и)

  • Василь Федорович Чехун академік НАН України, доктор медичних наук, професор, директор Інституту експериментальної патології, онкології і радіобіології ім. Р.Є. Кавецького НАН України
  • Ігор Леонідович Якименко доктор біологічних наук, професор кафедри біохімії та екологічного контролю Національного університету харчових технологій
  • Олександр Сергійович Цибулін кандидат біологічних наук, доцент кафедри вищої математики і фізики Білоцерківського національного аграрного університету
  • Євгеній Петрович Сидорик доктор медичних наук, професор, завідувач лабораторії біофізики Інституту експериментальної патології, онкології і радіобіології ім. Р.Є. Кавецького НАН України
  • Сергій Дмитрович Кириленко кандидат біологічних наук, професор факультету структурної та функціональної біології Університету Кампінаса, Бразилія

DOI:

https://doi.org/10.15407/visn2016.02.073

Ключові слова:

вільні радикали, оксидативний стрес, радіочастотне випромінювання, активні форми кисню, ушкодження ДНК, апоптоз

Анотація

Огляд присвячено аналізу експериментальних даних щодо біологічних ефектів низькоінтенсивного радіочастотного випромінювання. Наявні на сьогодні результати досліджень свідчать про те, що радіочастотне випромінювання нетеплових інтенсивностей, взаємодіючи з іонами і локальними зарядами макромолекул, може потенційно впливати на рівень метаболізму клітини, активізувати вільнорадикальні та пероксидні процеси, пригнічувати активність ензимів антиоксидантного захисту, призводити до окисного ушкодження ДНК. Наведені дані дають змогу класифікувати низькоінтенсивне радіочастотне випромінювання як стресовий/оксидативний чинник для клітини.

Посилання

Maes W. Stress caused by electromagnetic fields and radiation. (Neubeuern, 2005).

Hardell L., Carlberg M., Hansson M.K., Eriksson M. Case-control study on the use of mobile and cordless phones and the risk for malignant melanoma in the head and neck region. Pathophysiology. 2011. 18(4): 325. http://doi.org/10.1016/j.pathophys.2011.06.001

Hardell L., Carlberg M., Soderqvist F., Mild K.H., Morgan L.L. Long-term use of cellular phones and brain tumours: increased risk associated with use for > or =10 years. Occup. Environ. Med. 2007. 64(9): 626. http://doi.org/10.1136/oem.2006.029751

Sadetzki S., Chetrit A., Jarus-Hakak A., Cardis E., Deutch Y., Duvdevani S., Zultan A., Novikov I., Freedman L.,Wolf M. Cellular phone use and risk of benign and malignant parotid gland tumors a nationwide case-control study. Am. J. Epidemiol. 2008. 167(4): 457. http://doi.org/10.1093/aje/kwm325

Sato Y., Akiba S., Kubo O.,Yamaguchi N. A case-case study of mobile phone use and acoustic neuroma risk in Japan. Bioelectromagnetics. 2011. 32(2): 85. http://doi.org/10.1002/bem.20616

Abdel-Rassoul G., El-Fateh O.A., Salem M.A., Michael A., Farahat F., El-Batanouny M.,Salem E. Neurobehavioral effects among inhabitants around mobile phone base stations. Neurotoxicology. 2007. 28(2): 434. http://doi.org/10.1016/j.neuro.2006.07.012

Buchner K., Eger H. Changes of Clinically Important Neurotransmitters under the Influence of Modulated RF Fields.A Long-term Study under Real-life Conditions. Umwelt -Medizin-Gesellschaft. 2011. 24(1): 44.

Chu M.K., Song H.G., Kim C.,Lee B.C. Clinical features of headache associated with mobile phone use. a cross-sectional study in university students. BMC Neurol. 2011. 11: 115. http://doi.org/10.1186/1471-2377-11-115

Agarwal A., Desai N.R., Makker K., Varghese A., Mouradi R., Sabanegh E., Sharma R. Effects of radiofrequency electromagnetic waves (RF-EMW) from cellular phones on human ejaculated semen. an in vitro pilot study. Fertil. Steril. 2009. 92(4): 1318. http://doi.org/10.1016/j.fertnstert.2008.08.022

Guidelines for limiting exposure to time-varying elecrtic, magnetic and electromagnetic fields (up to 300 GHz). Health Phys. 1998. 74(4): .494.

Belyaev I. Dependence of non-thermal biological effects of microwaves on physical and biological variables. implications for reproducibility and safety standards. Eur. J. Oncol. Library. 2010. 5: 187.

Consales C., Merla C., Marino C., Benassi B. Electromagnetic fields, oxidative stress, and neurodegeneration. Int. J. Cell Biol. 2012. 683897. http://doi.org/10.1155/2012/683897

Desai N.R., Kesari K.K., Agarwal A. Pathophysiology of cell phone radiation: oxidative stress and carcinogenesis with focus on male reproductive system. Reprod. Biol. Endocrinol. 2009. 7: 114. http://doi.org/10.1186/1477-7827-7-114

Yakymenko I., Sidorik E., Tsybulin O. Metabolic changes in living cells under electromagnetic radiation of mobile communication systems. Ukrainian Biochem. J. 2011. 83(2): 5. [in Russian].

Hyland G.J. Physics and biology of mobile telephony. Lancet. 2000. 356(9244): 1833. http://doi.org/10.1016/S0140-6736(00)03243-8

Gandhi O.P., Morgan L.L., de Salles A.A., Han Y.Y., Herberman R.B., Davis D.L. Exposure limits. the underestimation of absorbed cell phone radiation, especially in children. Electromagn. Biol. Med. 2012. 31(1): 34. http://doi.org/10.3109/15368378.2011.622827

Panagopoulos D.J., Karabarbounis A., Margaritis L.H. Mechanism for action of electromagnetic fields on cells. Biochem. Biophys. Res. Commun. 2002. 298(1): 95. http://doi.org/10.1016/S0006-291X(02)02393-8

Goodman R., Blank M. Insights into electromagnetic interaction mechanisms. J. Cell Physiol. 2002. 192(1): 16. http://doi.org/10.1002/jcp.10098

Blank M., Soo L. Electromagnetic acceleration of electron transfer reactions. J. Cell Biochem. 2001. 81(2): 278. http://doi.org/10.1002/1097-4644(20010501)81:2<278::AID-JCB1042>3.0.CO;2-F

Blank M., Soo L. Electromagnetic acceleration of the Belousov-Zhabotinski reaction. Bioelectrochemistry. 2003. 61(1): 93. http://doi.org/10.1016/j.bioelechem.2003.09.001

Marino A.A., Carrubba S., Frilot C.,Chesson A.L. Evidence that transduction of electromagnetic field is mediated by a force receptor. Neurosci. Lett. 2009. 452(2): 119. http://doi.org/10.1016/j.neulet.2009.01.051

Georgiou C.D. Oxidative stress-induced biological damage by low-level EMFs. Eur. J. Oncol. 2010. 5: 63.

Céspedes O., Ueno S. Effects of radio frequency magnetic fields on iron release from cage proteins. Bioelectromagnetics. 2009. 30(5): 336. http://doi.org/10.1002/bem.20488

Zmyslony M., Politanski P., Rajkowska E., Szymczak W., Jajte J. Acute exposure to 930 MHz CW electromagnetic radiation in vitro affects reactive oxygen species level in rat lymphocytes treated by iron ions. Bioelectromagnetics. 2004. 25(5): 324. http://doi.org/10.1002/bem.10191

Bohr H., Bohr J. Microwave-enhanced folding and denaturation of globular proteins. Phys. Rev. E. 2000. 61: 4310. http://doi.org/10.1103/PhysRevE.61.4310

Budi A., Legge F.S., Treutlein H.,Yarovsky I. Effect of frequency on insulin response to electric field stress. J. Phys. Chem. B. 2007. 111(20): 5748. http://doi.org/10.1021/jp067248g

Pavicic I., Trosic I. Interaction of GSM modulated RF radiation and macromolecular cytoskeleton structures. In: Biological Effects of Electromagnetic Fields: Proc. 6th Int. Workshop (10–14 Oct. 2010, Bodrum, Turkey).

Hoyto A., Juutilainen J.,Naarala J. Ornithine decarboxylase activity is affected in primary astrocytes but not in secondary cell lines exposed to 872 MHz RF radiation. Int. J. Radiat. Biol. 2007. 83(6): 367. http://doi.org/10.1080/09553000701317341

Pall M.L. Electromagnetic fields act via activation of voltage-gated calcium channels to produce beneficial or adverse effects. J. Cell. Mol. Med. 2013. 17(8): 958. http://doi.org/10.1111/jcmm.12088

Vaks V.L., Domrachev G.A., Rodygin Y.L., Selivanovskii D.A.,Spivak E.I. Dissociation of water by microwave radiation. Radiophys. Quantum Electron. 1994. 37(1): 85. http://doi.org/10.1007/BF01039308

Halliwell B. Biochemistry of oxidative stress. Biochem. Soc. Trans. 2007. 35: 1147. http://doi.org/10.1042/BST0351147

Halliwell B. Reactive oxygen species in living systems. source, biochemistry, and role in human disease. Am. J. Med. 1991. 91(3): 14S. http://doi.org/10.1016/0002-9343(91)90279-7

Halliwell B., Gutteridge J.M. Biologically relevant metal ion-dependent hydroxyl radical generation. FEBS Lett. 1992. 307(1): 108. http://doi.org/10.1016/0014-5793(92)80911-Y

Halliwell B., Gutteridge J M. The importance of free radicals and catalytic metal ions in human diseases. Mol. Aspects Med. 1985. 8(2): 89. http://doi.org/10.1016/0098-2997(85)90001-9

Halliwell B. Oxidants and human disease: some new concepts. FASEB J. 1987. 1(5): 358.

Gutteridge J.M. Hydroxyl radicals, iron, oxidative stress, and neurodegeneration. Ann. N. Y. Acad. Sci. 1994. 738: 201. http://doi.org/10.1111/j.1749-6632.1994.tb21805.x

Feig D.I., Reid T.M., Loeb L.A. Reactive oxygen species in tumorigenesis. Cancer Res. 1994. 54: 1890s.

Mates J.M. Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology. 2000. 153(1): 83. http://doi.org/10.1016/S0300-483X(00)00306-1

Friedman J., Kraus S., Hauptman Y., Schiff Y.,Seger R. Mechanism of short-term ERK activation by electromagnetic fields at mobile phone frequencies. Biochem. J. 2007. 405(3): 559. http://doi.org/10.1042/BJ20061653

Griendling K.K., Sorescu D., Ushio-Fukai M. NAD(P)H oxidase. role in cardiovascular biology and disease. Circ. Res. 2000. 86(5): 494. http://doi.org/10.1161/01.RES.86.5.494

Low H., Crane F.L., Morre D.J. Putting together a plasma membrane NADH oxidase. Int. J. Biochem. Cell Biol. 2012. 44(11): 1834. http://doi.org/10.1016/j.biocel.2012.06.032

Inoue M., Sato E.F., Nishikawa M., Park A.M., Kira Y., Imada I., Utsumi K. Mitochondrial generation of reactive oxygen species and its role in aerobic life. Curr. Med. Chem. 2003. 10(23): 2495. http://doi.org/10.2174/0929867033456477

De Iuliis G.N., Newey R.J., King B.V., Aitken R.J. Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro. PLoS One. 2009. 4(7): e6446. http://doi.org/10.1371/journal.pone.0006446

Burlaka A., Tsybulin O., Sidorik E., Lukin S., Polishuk V., Tsehmistrenko S., Yakymenko I. Overproduction of free radical species in embryonal cells exposed to low intensity radiofrequency radiation. Exp. Oncol. 2013. 35(3): 219.

Liu Y., Fiskum G., Schubert D. Generation of reactive oxygen species by the mitochondrial electron transport chain. J. Neurochem. 2002. 80(5): 780. http://doi.org/10.1046/j.0022-3042.2002.00744.x

Guzy R.D., Schumacker P.T. Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp. Physiol. 2006. 91(5): 807. http://doi.org/10.1113/expphysiol.2006.033506

Wang X., Sharma R.K., Gupta A., George V., Thomas Jr. A.J., Falcone T., Agarwal A. Alterations in mitochondria membrane potential and oxidative stress in infertile men: a prospective observational study. Fertil. Steril. 2003. 80: 844. http://doi.org/10.1016/S0015-0282(03)00983-X

Ott M., Gogvadze V., Orrenius S., Zhivotovsky B. Mitochondria, oxidative stress and cell death. Apoptosis. 2007. 12(5): 913. http://doi.org/10.1007/s10495-007-0756-2

Caraglia M., Marra M., Mancinelli F., D'Ambrosio G., Massa R., Giordano A., Budillon A., Abbruzzese A., Bismuto E. Electromagnetic fields at mobile phone frequency induce apoptosis and inactivation of the multi-chaperone complex in human epidermoid cancer cells. J. Cell Physiol. 2005. 204(2): 539. http://doi.org/10.1002/jcp.20327

Zhao T.Y., Zou S.P.,Knapp P.E. Exposure to cell phone radiation up-regulates apoptosis genes in primary cultures of neurons and astrocytes. Neurosci. Lett. 2007. 412(1): 34. http://doi.org/10.1016/j.neulet.2006.09.092

Yakymenko I., Tsybulin O., Sidorik E., Henshel D., Kyrylenko O., Kyrylenko S. Oxidative mechanisms of biological activity of low intensity radiofrequency radiation. Electromag. Biol. Med. 2015. PMID: 26151230.

Avci B., Akar A., Bilgici B.,Tuncel O.K. Oxidative stress induced by 1.8 GHz radio frequency electromagnetic radiation and effects of garlic extract in rats. Int. J. Radiat. Biol. 2012. 88(11): 799. http://doi.org/10.3109/09553002.2012.711504

Bilgici B., Akar A., Avci B.,Tuncel O.K. Effect of 900 MHz radiofrequency radiation on oxidative stress in rat brain and serum. Electromagn. Biol. Med. 2013. 32(1): 20. http://doi.org/10.3109/15368378.2012.699012

Ozguner F., Bardak Y.,Comlekci S. Protective effects of melatonin and caffeic acid phenethyl ester against retinal oxidative stress in long-term use of mobile phone. a comparative study. Mol. Cell Biochem. 2006. 282(1): 83. http://doi.org/10.1007/s11010-006-1267-0

Jelodar G., Akbari A., Nazifi S. The prophylactic effect of vitamin C on oxidative stress indexes in rat eyes following exposure to radiofrequency wave generated by a BTS antenna model. Int. J Radiat. Biol. 2013. 89(2): 128. http://doi.org/10.3109/09553002.2012.721051

Oral B., Guney M., Ozguner F., Karahan N., Mungan T., Comlekci S., Cesur G. Endometrial apoptosis induced by a 900-MHz mobile phone. preventive effects of vitamins E and C. Adv. Ther. 2006. 23(6): 957. http://doi.org/10.1007/BF02850217

Turker Y., Naziroglu M., Gumral N., Celik O., Saygin M., Comlekci S., Flores-Arce M. Selenium and L-carnitine reduce oxidative stress in the heart of rat induced by 2.45-GHz radiation from wireless devices. Biol. Trace Elem. Res. 2011. 143(3): 1640. http://doi.org/10.1007/s12011-011-8994-0

Oksay T., Naziroğlu M., Doğan S., Güzel A., Gümral N., Koşar P.A. Protective effects of melatonin against oxidative injury in rat testis induced by wireless (2.45 GHz) devices. Andrologia. 2014. 46(1): 65. http://doi.org/10.1111/and.12044

Guidelines on limits of exposure to static magnetic fields. Health Phys. 2009. 96: 504. http://doi.org/10.1097/01.HP.0000343164.27920.4a

Hong M.N., Kim B.C., Ko Y.G., Lee Y.S., Hong S.C., Kim T., Pack J.K., Choi H.D., Kim N., Lee J.S. Effects of 837 and 1950 MHz radiofrequency radiation exposure alone or combined on oxidative stress in MCF10A cells. Bioelectromagnetics. 2012. 33(7): 604. http://doi.org/10.1002/bem.21731

Kang K.A., Lee H.C., Lee J.J., Hong M.N., Park M.J., Lee Y.S., Choi H.D., Kim N., Ko Y.G., Lee J.S. Effects of combined radiofrequency radiation exposure on levels of reactive oxygen species in neuronal cells. J. Radiat. Res. 2014. 55(2): 265. http://doi.org/10.1093/jrr/rrt116

Luukkonen J., Hakulinen P., Maki-Paakkanen J., Juutilainen J., Naarala J. Enhancement of chemically induced reactive oxygen species production and DNA damage in human SH-SY5Y neuroblastoma cells by 872 MHz radiofrequency radiation. Mutat. Res. 2009. 662(1): 54. http://doi.org/10.1016/j.mrfmmm.2008.12.005

Ruediger H.W. Genotoxic effects of radiofrequency electromagnetic fields. Pathophysiology. 2009. 16 89. http://doi.org/10.1016/j.pathophys.2008.11.004

Garaj-Vrhovac V., Fucic A., Horvat D. The correlation between the frequency of micronuclei and specific chromosome aberrations in human lymphocytes exposed to microwave radiation in vitro. Mutat. Res. 1992. 281(2): 181. http://doi.org/10.1016/0165-7992(92)90006-4

Tice R.R., Hook G.G., Donner M., McRee D.I., Guy A.W. Genotoxicity of radiofrequency signals. I. Investigation of DNA damage and micronuclei induction in cultured human blood cells. Bioelectromagnetics. 2002. 23(2): 113. http://doi.org/10.1002/bem.104

Zotti-Martelli L., Peccatori M., Maggini V., Ballardin M., Barale R. Individual responsiveness to induction of micronuclei in human lymphocytes after exposure in vitro to 1800-MHz microwave radiation. Mutat. Res. 2005. 582(1): 42. http://doi.org/10.1016/j.mrgentox.2004.12.014

Garson O.M., McRobert T.L., Campbell L.J., Hocking B.A., Gordon I. A chromosomal study of workers with long-term exposure to radio-frequency radiation. Med. J. Aust. 1991. 155(5): 289.

Kerbacher J.J., Meltz M.L., Erwin D.N. Influence of radiofrequency radiation on chromosome aberrations in CHO cells and its interaction with DNA-damaging agents. Radiat. Res. 1990. 123(3): 311. http://doi.org/10.2307/3577738

Maes A., Collier M.,Verschaeve L. Cytogenetic investigations on microwaves emitted by a 455.7 MHz car phone. Folia Biol. 2000. 46(5): 175.

Baohong W., Jiliang H., Lifen J., Deqiang L., Wei Z., Jianlin L., Hongping D. Studying the synergistic damage effects induced by 1.8 GHz radiofrequency field radiation (RFR) with four chemical mutagens on human lymphocyte DNA using comet assay in vitro. Mutat. Res. 2005. 578(1): 149. http://doi.org/10.1016/j.mrfmmm.2005.05.001

Belyaev I.Y., Koch C.B., Terenius O., Roxstrom-Lindquist K., Malmgren L.O., W HS, Salford L.G., Persson B.R. Exposure of rat brain to 915 MHz GSM microwaves induces changes in gene expression but not double stranded DNA breaks or effects on chromatin conformation. Bioelectromagnetics. 2006. 27(4): 295. http://doi.org/10.1002/bem.20216

Diem E., Schwarz C., Adlkofer F., Jahn O.,Rudiger H. Non-thermal DNA breakage by mobile-phone radiation (1800 MHz) in human fibroblasts and in transformed GFSH-R17 rat granulosa cells in vitro. Mutat. Res. 2005. 583(2): 178. http://doi.org/10.1016/j.mrgentox.2005.03.006

Kim J.Y., Hong S.Y., Lee Y.M., Yu S.A., Koh W.S., Hong J.R., Son T., Chang S.K., Lee M. In vitro assessment of clastogenicity of mobile-phone radiation (835 MHz) using the alkaline comet assay and chromosomal aberration test. Environ. Toxicol. 2008. 23(3): 319. http://doi.org/10.1002/tox.20347

Lai H., Singh N.P. Single- and double-strand DNA breaks in rat brain cells after acute exposure to radiofrequency electromagnetic radiation. Int. J. Radiat. Biol. 1996. 69(4): 513. http://doi.org/10.1080/095530096145814

Liu C., Duan W., Xu S., Chen C., He M., Zhang L., Yu Z., Zhou Z. Exposure to 1800 MHz radiofrequency electromagnetic radiation induces oxidative DNA base damage in a mouse spermatocyte-derived cell line. Toxicol. Lett. 2013. 218(1): 2. http://doi.org/10.1016/j.toxlet.2013.01.003

Guler G., Tomruk A., Ozgur E., Sahin D., Sepici A., Altan N., Seyhan N. The effect of radiofrequency radiation on DNA and lipid damage in female and male infant rabbits. Int. J. Radiat. Biol. 2012. 88(4): 367. http://doi.org/10.3109/09553002.2012.646349

Khalil A.M., Gagaa M.H.,Alshamali A.M. 8-Oxo-7, 8-dihydro-2'-deoxyguanosine as a biomarker of DNA damage by mobile phone radiation. Hum. Exp. Toxicol. 2012. 31(7): 734. http://doi.org/10.1177/0960327111433184

Xu S., Zhou Z., Zhang L., Yu Z., Zhang W., Wang Y., Wang X., Li M., Chen Y., Chen C., He M., Zhang G., Zhong M. Exposure to 1800 MHz radiofrequency radiation induces oxidative damage to mitochondrial DNA in primary cultured neurons. Brain Res. 2010. 1311: 189. http://doi.org/10.1016/j.brainres.2009.10.062

Halliwell B. Oxidative stress and cancer. have we moved forward? Biochem. J. 2007. 401(1): 1. http://doi.org/10.1042/BJ20061131

Valko M., Leibfritz D., Moncol J., Cronin M.T., Mazur M.,Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007. 39(1): 44. http://doi.org/10.1016/j.biocel.2006.07.001

Valko M., Rhodes C.J., Moncol J., Izakovic M., Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 2006. 160(1): 1. http://doi.org/10.1016/j.cbi.2005.12.009

Forman H.J., Ursini F., Maiorino M. An overview of mechanisms of redox signaling. J. Mol. Cell. Cardiol. 2014. 73(2): 9. http://doi.org/10.1016/j.yjmcc.2014.01.018

Sies H. Role of metabolic H2O2 generation: redox signaling and oxidative stress. J. Biol. Chem. 2014. 289(13): 8735. http://doi.org/10.1074/jbc.R113.544635

Oshino N., Jamieson D., Sugano T., Chance B. Optical measurement of the catalase-hydrogen peroxide intermediate (Compound I) in the liver of anaesthetized rats and its implication to hydrogen peroxide production in situ. Biochem. J. 1975. 146(1): 67. http://doi.org/10.1042/bj1460067

Enyedi B., Niethammer P. H2O2 a chemoattractant? Methods Enzymol. 2013. 528: 237. http://doi.org/10.1016/B978-0-12-405881-1.00014-8

Hayden M.S.,Ghosh S. NF-kappaB in immunobiology. Cell Res. 2011. 21(2): 223. http://doi.org/10.1038/cr.2011.13

Tsybulin O., Sidorik E., Kyrylenko S., Henshel D., Yakymenko I. GSM 900 MHz microwave radiation affects embryo development of Japanese quails. Electromagn. Biol. Med. 2012. 31(1): 75. http://doi.org/10.3109/15368378.2011.624656

Tsybulin O., Sidorik E., Brieieva O., Buchynska L., Kyrylenko S., Henshel D.,Yakymenko I. GSM 900 MHz cellular phone radiation can either stimulate or depress early embryogenesis in Japanese quails depending on the duration of exposure. Int. J. Radiat. Biol. 2013. 89(9): 756. http://doi.org/10.3109/09553002.2013.791408

Calabrese E.J. Hormesis: why it is important to toxicology and toxicologists. Environ. Toxicol. Chem. 2008. 27(7): 1451. http://doi.org/10.1897/07-541.1

Johansson O. Electrohypersensitivity: state-of-the-art of a functional impairment. Electromagn. Biol. Med. 2006. 25(4): 245. http://doi.org/10.1080/15368370601044150

Hallberg O., Oberfeld G. Letter to the editor: will we all become electrosensitive? Electromagn. Biol. Med. 2006. 25(3): 189.

Yakymenko I., Sidorik E., Tsybulin O., Chekhun V. Potential risks of microwaves from mobile phones for youth health. Environ. Health. 2011. 56: 48.

Santini R., Santini P., Danze J.M., Ruz P.L.,Seigne M. Study of the health of people living in the vicinity of mobile phone base stations. Influences of distance and sex. Pathol. Biol. 2002. 50(6): 369. http://doi.org/10.1016/S0369-8114(02)00311-5

Johansson O., Gangi S., Liang Y., Yoshimura K., Jing C., Liu P.-Y. Cutaneous mast cells are altered in normal healthy volunteers sitting in front of ordinary TVs/PCs – results from open-field provocation experiments. J. Cutan. Pathol. 2001. 28(10): 513. http://doi.org/10.1034/j.1600-0560.2001.281004.x

Nagata M. Inflammatory cells and oxygen radicals. Curr. Drug Targets Inflamm. Allergy. 2005. 4(4): 503. http://doi.org/10.2174/1568010054526322

Okayama Y. Oxidative stress in allergic and inflammatory skin diseases. Curr. Drug Targets Inflamm. Allergy. 2005. 4(4): 517. http://doi.org/10.2174/1568010054526386

Boldogh I., Bacsi A., Choudhury B.K., Dharajiya N., Alam R., Hazra T.K., Mitra S., Goldblum R.M., Sur S. ROS generated by pollen NADPH oxidase provide a signal that augments antigen-induced allergic airway inflammation. J. Clin. Invest. 2005. 115(8): 2169. http://doi.org/10.1172/JCI24422

Yakymenko I., Sidorik E., Kyrylenko S., Chekhun V. Long-term exposure to microwave radiation provokes cancer growth: evidences from radars and mobile communication systems. Exp. Oncol. 2011. 33(2): 62.

Wolf R.,Wolf D. Increased incidence of cancer near a cell-phone transmitted station. In: Trends in cancer prevention. (Nova Sci. Pub. Inc., 2007).

Repacholi M.H., Basten A., Gebski V., Noonan D, Finnie J., Harris A.W. Lymphomas in E mu-Pim1 transgenic mice exposed to pulsed 900 MHZ electromagnetic fields. Radiat. Res. 1997. 147(5): 631. http://doi.org/10.2307/3579630

Hoyto A., Juutilainen J., Naarala J. Ornithine decarboxylase activity of L929 cells after exposure to continuous wave or 50 Hz modulated radiofrequency radiation--a replication study. Bioelectromagnetics. 2007. 28(7): 501. http://doi.org/10.1002/bem.20337

Clifford A., Morgan D., Yuspa S.H., Soler A.P., Gilmour S. Role of ornithine decarboxylase in epidermal tumorigenesis. Cancer Res. 1995. 55(8): 1680.

Nguyen H.L., Zucker S., Zarrabi K., Kadam P., Schmidt C., Cao J. Oxidative stress and prostate cancer progression are elicited by membrane-type 1 matrix metalloproteinase. Mol. Cancer Res. 2011. 9(10): 1305. http://doi.org/10.1158/1541-7786.MCR-11-0033

Ralph S.J., Rodríguez-Enríquez S., Neuzil J., Saavedra E., Moreno-Sánchez R. The causes of cancer revisited. “Mitochondrial malignancy” and ROS-induced oncogenic transformation.Why mitochondria are targets for cancer therapy. Mol. Aspects Med. 2010. 31(2): 145. http://doi.org/10.1016/j.mam.2010.02.008

##submission.downloads##

Опубліковано

2016-02-20

Як цитувати

Чехун, В. Ф., Якименко, І. Л., Цибулін, О. С., Сидорик, Є. П., & Кириленко, С. Д. (2016). Механізми біологічної активності низькоінтенсивного радіочастотного випромінювання. Вісник Національної академії наук України, (2), 73–86. https://doi.org/10.15407/visn2016.02.073