Giant Magnetoresistance: the Character of Phenomenon, the History of Discovery, an Implementation in Biology and Medicine

Authors

  • I.S. Chekman Bogomolets National Medical University, Kyiv
  • P.V. Simonov Bogomolets National Medical University, Kyiv

DOI:

https://doi.org/10.15407/visn2014.07.045

Keywords:

giant magnetoresistance, spintronics, Nobel Prize, spin valve, tunnel magnetoresistance, ab-on-a-chip

Abstract

The major milestones of the history of discovery of the giant magnetoresistance (GMR) phenomenon and development of new scientific and technological field of spintronics are highlighted in the article. GMR systems’ configurations, among which especially promising spin valves and magnetic tunnel junction systems, are briefly characterized. These devices find their use, particularly, in medicine. For instance, spin valves are introduced in medical practice as sensors for diseases’ diagnosis and treatment and as devices which track nanoparticles in an organism. Spintronics will develop in direction of an optimization of tunnel magnetoresistance systems and an integration of those into lab-on-a-chip technologies and other nanofluidics devices. That will improve an efficacy of diagnostic and therapeutic procedures’ performance.

References

Barash L. Spintronics - the next generation of electronics. [in Russian]. http://ko.com.ua/spintronika_-_jelektronika_sleduyushhego_pokoleniya_11278.

Awschalom D.D., Flatté M.E., Samarth N. Spintronics. Sci. Am. 2002. 286(6): 66–73. http://doi.org/10.1038/scientificamerican0602-66

Djamal M., Ramli S., Yulkifli A. Biosensor based on giant magnetoresistance material. Int. J. E-Health Med. Comm. 2010. 1(3): 1–16.

McCray W.P. From lab to iPod: A story of discovery and commercialization in the post-cold war era. Tech. Cult. 2009. 50: 58–81. http://doi.org/10.1353/tech.0.0222

Day C. Discoverers of giant magnetoresistance win this year’s physics Nobel. Phys. Today. 2007. 60(12): 12–14. http://doi.org/10.1063/1.2825057

Shinjo T. Artificial multilayers and nanomagnetic materials . Proc. Jpn. Acad. Ser. B. Phys. Biol. Sci. 2013. 89(2): 80–96. http://doi.org/10.2183/pjab.89.80

Ornes S. Giant magnetoresistance. Proc. Nat. Acad. Sci. 2013. 110(10): 3710. http://doi.org/10.1073/pnas.1302494110

The discovery of giant magnetoresistance scientific background on the Nobel Prize in physics, 2007. (The Royal Swedish Academy of Sciences, 2007).

Dekhtyaruk L.V. Vísnik Sumskogo Derzhavnogo Uníversitetu. 2007. (2): 120–26. [in Russian].

Pokladok N.T., Grigorchak Í.Í., Popovich D.Í. Nanosistemy, nanomateríaly, nanotekhnologíy. 2008. 6(1): 9–16. [in Ukrainian].

Protsenko Í.Yu., Yavorskiy Ya., Cheshko I.V. Vísnik Sumskogo Derzhavnogo Uníversitetu. 2004. (10): 65–81. [in Ukrainian].

Reig C., Cubells-Beltran M.D., Muñoz D.R. Magnetic field sensors based on giant magnetoresistance (GMR) technology: applications in electrical current sensing. Sensors (Basel). 2009. 9(10): 7919–42. http://doi.org/10.3390/s91007919

Ranchal R., Torija M., Lopez E., Sánchez M.C., Aroca C., Sánchez P. The influence of anisotropy on the magnetoresistance of permalloy-copper-permalloy thin films. Nanotechnology. 2002. 13(3): 392–397. http://doi.org/10.1088/0957-4484/13/3/330

Dalichaouch Y., Singsaas A.L., Putris F., Perry A.R., Czipott P.V. Low-frequency electromagnetic technique for nondestructive evaluation. Proc. SPIE. 2000. 3994: 2–9. http://doi.org/10.1117/12.385014

Dieny B., Speriosu V.S., Metin S., Parkin S.S.P., Gurney B.A., Baumgart P., Wilhoit D.R. Magnetotransport properties of magnetically soft spin-valve structures. J. Appl. Phys. 1991. 69: 4774–79. http://doi.org/10.1063/1.348252

Jander A., Smith C., Schneider R. Magnetoresistive sensors for nondestructive evaluation. Proc. SPIE. 2005. 5770: 1–13. http://doi.org/10.1117/12.601826

Veloso A., Freitas P.P., Wei P., Barradas N.P., Soares J.C., Almeida B., Sousa J.B. Magnetoresistance enhancement in specular, bottom-pinned, Mn83Ir17 spin valves with nano-oxide layers. Appl. Phys. Lett. 2000. 77: 1020–22. http://doi.org/10.1063/1.1288672

Ferreira R., Wisniowski P., Freitas P.P., Langer J., Ocker B., Maas W. Tuning of MgO barrier magnetic tunnel junction bias current for picotesla magnetic field detection. J. Appl. Phys. 2006. 99: 08K706.

Parkin S.S.P., Fontana R.E., Marley A.C. Low-field magnetoresistance in magnetic tunnel junctions prepared by contact masks and lithography: 25% magnetoresistance at 295 K in mega-ohm micron-sized junctions. J. Appl. Phys. 1997. 81: 5521. http://doi.org/10.1063/1.364588

Ziese M., Thornton M.J. Spin Electronics: Lecture Notes in Physics. (Berlin: Springer, 2001). http://doi.org/10.1007/3-540-45258-3

Berkowitz A.E., Mitchell J.R., Carey M.J., Young A.P., Zhang S., Spada F.E., Parker F.T., Hutten A., Thomas G. Giant magnetoresistance in heterogeneous Cu-Co alloys. Phys. Rev. Lett. 1992. 68(25): 3745–48. http://doi.org/10.1103/PhysRevLett.68.3745

Simonov P.V., Tsekhmister Ya.V., Chekman I.S. Ukrainskiy nauchno-meditsinskiy molodezhnyy zhurnal. 2012. (2): 25–29. [in Ukrainian].

Chekman I.S., Simonov P.V. Natural nanostructures and nanomehanizmy. (Kyiv: Zadruga, 2012). [in Ukrainian].

Baselt D.R., Lee G.U., Natesan M., Metzger S.W., Sheehan P.E., Colton R.J. A biosensor based on magnetoresistance technology. Biosens. Bioelectron. 1998. 13(7–8): 731–39. http://doi.org/10.1016/S0956-5663(98)00037-2

Chekman I.S., Simonov P.V. Structure and function of biological membranes: the impact of nanoparticles. Int. J. Phys. Pathophys. 2012. 3(2): 187–208. http://doi.org/10.1615/IntJPhysPathophys.v3.i2.80

Childress J.R., Fontana R.E. Jr. Magnetic recording read head sensor technology. Compt. Rendus Phys. 2005. 6: 997–1012. http://doi.org/10.1016/j.crhy.2005.11.001

Pelegrí J., Ramírez D., Sanchis E., Navarro A.E., Casans S. Giant magnetoresistive sensor in conductance control of switching regulators. IEEE Trans. Magn. 2000. 36: 3578–80. http://doi.org/10.1109/20.908907

Thessler S., Kooistra L., Teye F., Huitu H., Bregt A.K. Geosensors to support crop production: current applications and user requirements. Sensors (Basel). 2011. 11(7): 6656–84. http://doi.org/10.3390/s110706656

Hall D.A., Gaster R.S., Lin T., Osterfeld S.J., Han S., Murmann B., Wang S.X. GMR biosensor arrays: a system perspective. Biosens. Bioelectron. 2010. 25(9): 2051–57. http://doi.org/10.1016/j.bios.2010.01.038

Mujika M., Arana S., Castaño E., Tijero M., Vilares R., Ruano-López J.M., Cruz A., Sainz L., Berganza J. Magnetoresistive immunosensor for the detection of Escherichia coli O157:H7 including a microfluidic network. Biosens. Bioelectron. 2009. 24 (5): 1253–58. http://doi.org/10.1016/j.bios.2008.07.024

Wang S.X., Li G. Advances in giant magnetoresistance biosensors with magnetic nanoparticle tags: Review and outlook. IEEE Trans. Magn. 2008. 44: 1687–702. http://doi.org/10.1109/TMAG.2008.920962

Xu L., Yu H., Han S.J., Osterfeld S,. White R.L., Pourmand N., Wang S.X. Giant Magnetoresistive Sensors for DNA Microarray. IEEE Trans. Magn. 2008. 44(11): 3989–91. http://doi.org/10.1109/TMAG.2008.2002795

Li G., Sun S., Wilson R.J., White R.L., Pourmand N., Wang S.X. Spin valve sensors for ultrasensitive detection of superparamagnetic nanoparticles for biological applications. Sens. Actuators A Phys. 2006. 126(1): 98–106. http://doi.org/10.1016/j.sna.2005.10.001

Schotter J., Kamp P.B., Becker A., Pühler A., Reiss G., Brückl H. Comparison of a prototype magnetoresistive biosensor to standard fluorescent DNA detection. Biosens. Bioelectron. 2004. 19(10): 1149–56. http://doi.org/10.1016/j.bios.2003.11.007

Chemla Y.R., Grossman H.L., Poon Y., McDermott R., Stevens R., Alper M.D., Clarke J. Ultrasensitive magnetic biosensor for homogeneous immunoassay. PNAS. 2000. 97(26): 14268–72. http://doi.org/10.1073/pnas.97.26.14268

Enpuku K., Minotani T., Gima T., Kuroki Y., Itoh Y., Yamashita M., Katakura Y., Kuhara S. Detection of magnetic nanoparticles with superconducting quantum interference device (SQUID) magnetometer and application to immunoassays. J. Appl. Phys. P. 2 (Lett.). 1999. 38: L1102–05.

Pankhurst Q.A., Connolly J., Jones S.K., Dobson J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D. Appl. Phys. 2003. 36: R167–81. http://doi.org/10.1088/0022-3727/36/13/201

Sun S., Murray C.B., Weller D., Folks L., Moser A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science. 2000. 287(5460): 1989–92. http://doi.org/10.1126/science.287.5460.1989

Sun S., Zeng H., Robinson D.B., Raoux S., Rice P.M., Wang S.X., Li G. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 2004. 126(1): 273–79. http://doi.org/10.1021/ja0380852

Yamada S. High-spatial-resolution magnetic-field measurement by giant magnetoresistance sensor – applications to nondestructive evaluation and biomedical engineering. Int. J. Smart Sens. Intel. Sys. 2008. 1(1): 160–75.

Reiss G., Hütten A. Magnetic nanoparticles: applications beyond data storage. Nat. Mater. 2005. 4(10): 725–26. http://doi.org/10.1038/nmat1494

Chekman І.S. Quantum Pharmacology.(Kyiv: Naukova Dumka, 2012). [in Ukrainian].

Published

2014-07-25