Незнайома Антарктика: рослини розкривають свої таємниці
DOI:
https://doi.org/10.15407/visn2013.10.058Ключові слова:
рослини Антарктики, культура in vitro, абіотичний стрес, біотехнологіяАнотація
Антарктида — віддалений та малодоступний континент Землі, рослинний світ якого складається з водоростей, мохів, лишайників і лише двох видів судинних рослин. Шквальні вітри, низька температура та вологість повітря, високий рівень сонячної радіації створюють екстремальні умови для життя рослин. Проте вони все ж адаптувалися і виживають навіть у такому суворому кліматі та є надзвичайно цікавими об’єктами біотехнологічних досліджень. Створення in vitro колекції рослин Антарктики, яка налічує близько 40 зразків, дало можливість використати їх для вивчення дії абіотичних стресів, таких як засолення, значний вміст азоту, наявність високотоксичного Cr(VI), низьких і високих температур. Культивовані in vitro рослини Антарктики виявилися оптимальною моделлю для дослідження впливу цілої низки стресових факторів. Використання такої системи дало змогу кількісно оцінити дію того чи іншого фактора за рядом параметрів, зокрема приростом маси, коефіцієнтом розмноження, вмістом запасних сполук. Проведення цих досліджень дозволило визначити особливості впливу абіотичних факторів і порівняти стійкість до них рослин різних видів. Виявилося, що рослини W.fontinaliopsis значно відрізняються від рослин інших досліджуваних видів і є по-своєму унікальними. Вивчення геному цих рослин у перспективі може стати основою для використання їх як цінного генетичного матеріалу в біотехнологіях з метою створення сільськогосподарських культур, стійких до абіотичних стресів.
Посилання
Mosyakin S.L., Bezusko L.G., Mosyakin A.S. Ori-gins of native vascular plants of Antarctica: comments from a historical phytogeography viewpoint. Cytol. Genet. 2007. 41(5): 54–63. http://doi.org/10.3103/S009545270705009X
Kyr’iachenko S.S., Kozerets’ka I.A., Rakusa-Sushchevs’ky S. Deschampsia antarctica: genetic and molecular-biological aspects of spreading in Antarctica. Cytol. Genet. 2005. 39(4): 75–80.
Peat H.J., Clarke A., Convey P. Diversity and biogeography of the Antarctic flora. J. Biogeogr. 2007. 34(1): 132–46. http://doi.org/10.1111/j.1365-2699.2006.01565.x
Convey P., Lewis Smith R.I. Geothermal bryophyte habitats in the South Sandwich Islands, maritime Antarctic. J. Veg. Sci. 2006. 17(4): 529–38. http://doi.org/10.1111/j.1654-1103.2006.tb02474.x
Ochyra R., Lewis Smith R.I., Bednarek-Ochyra H. The Illustrated Moss Flora of Antarctica. (Cambridge Univ. Press, 2008).
Bednarek-Ochyra H., Vána J., Ochyra R., Lewis Smith R.I. The liverwort flora of Antarctica. (Cracow: PAS, W. Szafer Institute of Botany, 2000).
Convey P. Antarctic Ecosystems. In: Encyclopedia of Biodiversity (San Diego: Academic Press, 2001). V. 1. P. 171–184.
Seppelt R.D., Green T.G. A bryophyte flora for Southern Victoria Land, Antarctica. New Zealand J. of Botany. 1998. 36: 617–35. http://doi.org/10.1080/0028825X.1998.9512599
Convey P., Lewis Smith R.I., Hodgson D.A., Peat H.J. The flora of the South Sandwich Islands, with particular reference to the influence of geothermal heating. J. Biogeogr. 2000. 27(6): 1279–95. http://doi.org/10.1046/j.1365-2699.2000.00512.x
Grolle R. The hepatics of the South Sandwich Islands and South Georgia. Br. Antarct. Surv. Bull. 1972. (28): 83–95.
Lewis Smith R.I. The bryophyte flora of geo-thermal habitats on Deception Island, Antarctica. J. Hattori Bot. Lab. 2005. 97: 233–48.
Skotnicki M.L., Selkirk P.M., Broady P.A. Dispersal of the moss Campylopus pyriformis on geothermal ground near the summit of Mount Erebus and Mount Melbourne, Victoria Land, Antarctica. Antarct. Sci. 2001. 13: 280–85. http://doi.org/10.1017/S0954102001000396
Davis R.C. Environmental Factors Influencing Decomposition Rates in Two Antarctic Moss Communities. Polar Biol. 1986. 5(2): 95–103. http://doi.org/10.1007/BF00443381
Ochyra R. The moss flora of King George Island, Antarctica. (Cracow: PAS, W. Szafer Institute of Botany, 1998).
Parnikoza I., Kozeretska I., Kunakh V. Vascular Plants of the Maritime Antarctic: Origin and Adaptation. Am. J. Plant Sci. 2011. 2: 381–95. http://doi.org/10.4236/ajps.2011.23044
Volkov R.A., Kozeretska I.A., Kyryachenko S.S., Andreev I.O., Maidanyuk D.N., Parnikoza I.Yu., Kunakh V.A. Molecular evolution and variability of ITS1–ITS2 in populations of Deschampsia antarctica from two regions of the maritime Antarctic. Polar Sci. 2010. 4(3): 469–78. http://doi.org/10.1016/j.polar.2010.04.011
Convey P. Reproduction of Antarctic flowering plants. Antarctic Sci. 1996. 8(2): 127–34. http://doi.org/10.1017/S0954102096000193
Corner R.W.M. Studies in Colobanthus quitensis (Kunth.) Bartl. and Deschampsia antarctica Desv. IV. Distribution and reproductive performance in the Argentine Island. Br. Antarct. Surv. Bull. 1971. (26): 41–50.
Edwards J.A. Studies in Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctica Desv. VI. Reproductive performance on Signy Island. Br. Antarct. Surv. Bull. 1974. (28): 67–86.
Longton R.E., Holdgate M.W. The South Sandwich Islands: IV. Botany. Br. Antarct. Surv. Sci. 1979. (94): 1–53.
Giełwanowska I., Szczuka E., Bednara J., Górecki R. Anatomical Features and Ultrastructure of Deschampsia antarctica (Poaceae) Leaves from Different Growing Habitats. Ann. Bot. 2005. 96(6): 1109–19. http://doi.org/10.1093/aob/mci262
Parnikoza I.Y., Loro P., Miryuta N.Y. et al. The influence of some environmental factors on cytological and biometric parameters and chlorophyll content of Deschampsia antarctica Desv. in the maritime Antarctic. Cytol. Genet. 2011. 45(3): 43–50. http://doi.org/10.3103/S0095452711030078
Van de Staaij J., de Bakker N.V., Oosthoek A., Broekman R,, van Beem A,, Stroetenga M,, Aerts R,, Rozema J. Flavonoid concentrations in three grass species and a sedge grown in the field and under controlled environment conditions in response to enhanced UV-B radiation. J. Photochem. Photobiol. B. 2002. 66(1): 21–29. http://doi.org/10.1016/S1011-1344(01)00271-8
Edwards J.A., Levis Smith R.I. Photosynthesis and respiration of Colobanthus quitensis and Deschampsia antarctica from the maritime Antarctic. Br. Antarct. Surv. Bull. 1988. (81): 43–63.
Kennedy A.D. Photosynthetic response of the Antarctic moss Polytrichum alpestre Hoppe to low temperatures and freeze-thaw stress. Polar Biol. 1993. 13(4): 271–79. http://doi.org/10.1007/BF00238763
http://www.antarctica.ac.uk/about_bas/publications/science_publications.php.
Kappen L., Schroeter B. Plants and Lichenes in the Antarctic, their way of live and their relevance to soil formation. In: Geoecology of Antarctic ice-free coastal landscapes. Ecological studies. (L. Beyer, M. Bölter eds.). 2002. V. 154. P. 327–374. http://doi.org/10.1007/978-3-642-56318-8_18
Ewart K.V., Lin Q., Hew C.L. Structure, function and evolution of antifreeze proteins. Cell. Mol. Life Sci. 1999. 55(2): 271–83. http://doi.org/10.1007/s000180050289
Griffith M., Yaish M.W.F. Antifreeze proteins in overwintering plants: a tale of two activities. Trends Plant Sci. 2004. 9(8): 399–405. http://doi.org/10.1016/j.tplants.2004.06.007
Houde M., Daniel C., Lachapelle M., Allard F., Laliberté S., Sarhan F. Immunolocalization of freezing-tolerance associated proteins in the cytoplasm and nucleoplasm of wheat crown tissues. Plant J. 1995. 8: 583–593. http://doi.org/10.1046/j.1365-313X.1995.8040583.x
Griffith M., Lumb C., Wiseman S.B., Wisniewski M., Johnson R.W., Marangoni A.G. Antifreeze proteins modify the freezing process in plants. Plant Physiol. 2005. 138(1): 330–40. http://doi.org/10.1104/pp.104.058628
Atici O., Nalbantoglu B. Antifreeze proteins in higher plants. Phytochem. 2003. 64(7): 1187–96. http://doi.org/10.1016/S0031-9422(03)00420-5
Gunn T.C., Walton D.W.H. Storage carbohydrate production and overwintering strategy in a winter-green tussock grass on South Georgia (Sub-Antarctic). Polar Biol. 1985. 4(4): 237–42. http://doi.org/10.1007/BF00999768
Liu N., Zhong N.Q., Wang G.L., Li L.J., Liu X.L., He Y.K., Xia G.X. Cloning and functional characterization of PpDBF1 gene encoding a DRE-binding transcription factor from Physcomitrella patens. Planta. 2007. 226(4): 827–38. http://doi.org/10.1007/s00425-007-0529-8
Minami A., Nagao M., Ikegami K., Koshiba T., Arakawa K., Fujikawa S., Takezawa D. Cold acclimation in bryophytes: low-temperature-induced freezing tolerance in Physcomitrella patens is associated with increases in expression levels of stress-related genes but not with increase in level of endogenous abscisic acid. Planta. 2004. 220(3): 414–23. http://doi.org/10.1007/s00425-004-1361-z
Kroemer K., Reski R., Frank W. Abiotic stress response in the moss Physcomitrella patens: evidence for an evolutionary alteration in signaling pathways in land plants. Plant Cell. Rep. 2004. 22. 864–70. http://doi.org/10.1007/s00299-004-0785-z
Sun M.M., Li L.H., Xie H., Ma R.C., He Y.K. Differentially Expressed Genes under Cold Acclimation in Physcomitrella patens. J. Biochem. Mol. Biol. 2007. 40(6): 986–1001. http://doi.org/10.5483/BMBRep.2007.40.6.986
Gidekel M., Destefano-Beltrán L., García P,. Mujica L., Leal P., Cuba M., Fuentes L., Bravo L.A., Corcuera L.J., Alberdi M., Concha I., Gutiérrez A. Identification and characterization of three novel cold acclimation-responsive genes from the extremophile hair grass Deschampsia antarctica Desv. Extremophiles. 2003. 7(6): 459–69. http://doi.org/10.1007/s00792-003-0345-4
Chew O., Lelean S., John U.P., Spangenberg G.C. Cold acclimation induces rapid and dynamic changes in freeze tolerance mechanisms in the cryophile Deschampsia antarctica E. Desv. Plant Cell Environ. 2012. 35: 829–37. http://doi.org/10.1111/j.1365-3040.2011.02456.x
John U.P., Polotnianka R.M., Sivakumaran K.A., Chew O., Mackin L., Kuiper M.J., Talbot J.P., Nugent G.D., Mautord J., Schrauf G.E., Spangenberg G.C. Ice recrystallization inhibition proteins (IRIPs) and freeze tolerance in the cryophilic Antarctic hair grass Deschampsia antarctica E. Desv. Plant Cell Environ. 2009. 32: 336–48. http://doi.org/10.1111/j.1365-3040.2009.01925.x
Zúñiga-Feest A., Ort D.R., Gutiérrez A., Gidekel M., Bravo L.A., Corcuera L.J. Light regulation of sucrose-phosphate synthase activity in the freezing-tolerant grass Deschampsia antarctica. Photosynth. Res. 2005. 83(1): 75–86. http://doi.org/10.1007/s11120-004-4277-3
Bravo L.A., Griffith M. Characterization of anti-freeze activity in Antarctic plants. J. Exp. Bot. 2005. 56(414): 1189–96. http://doi.org/10.1093/jxb/eri112
Doucet C.J., Byass L., Elias L., Worrall D., Smallwood M., Bowles D.J. Distribution and characterization of recrystallization inhibitor activity in plant and lichen species from the UK and maritime Antarctic. Cryobiol. 2000. 40(3): 218–27. http://doi.org/10.1006/cryo.2000.2241
Lovelock C.E., Jackson A.E., Melick D.R., Seppelt R.D. Reversible Photoinhibition in Antarctic Moss during Freezing and Thawing. Plant Physiol. 1995. 109(3): 955–61.
Montiel P.O., Cowan D.A., Heywood R.B. The possible role of soluble carbohydrates and polyols as cryoprotectants in Antarctic plants. In: Proc. Univer. Res. in Antarctica, 1989–1992. (Cambridge: Br. Antarct. Surv., 1993). P. 119–25.
Zúñiga G.E., Alberdi M., Corcuera L.J. Non-structural carbohydrates in Deschampsia antarctica Desv. from South Shetland Islands, maritime Antarctic. Environ. Exp. Bot. 1996. 36(4): 393–99. http://doi.org/10.1016/S0098-8472(96)01026-X
Zúñiga G.E., Alberdi M., Fernández J., Montiel P., Corcuera L. Lipid content in leaves of Deschampsia antarctica from the maritime Antarctic. Phytochem. 1994. 37(3): 669–72. http://doi.org/10.1016/S0031-9422(00)90335-2
Robinson S.A., Wasley J., Popp M., Lovelock C.E. Desiccation tolerance of three moss species from continental Antarctica. Aust. J. Plant Physiol. 2000. 27(5): 379–88.
Fowbert J.A. An experimental study of growth in relation to morphology and shoot water content in maritime Antarctic mosses. New Phytol. 1996. 133(2): 363–73. http://doi.org/10.1111/j.1469-8137.1996.tb01903.x
Melick D.R., Seppelt R.D. Seasonal investigation of soluble carbohydrates and pigment levels in Antarctic bryophytes and lichens. Bryologist. 1994. 97: 13–19. http://doi.org/10.2307/3243343
Roser D.J., Melick D.R., Ling H.U., Seppelt R.D. Polyol and sugar content of terrestrial plants from continental Antarctica. Antarct. Sci. 1992. 4: 413–20. http://doi.org/10.1017/S0954102092000610
Smirnoff N. The carbohydrates of bryophytes in relation to desiccation tolerance. J. Bryol. 1992. 17: 185–91. http://doi.org/10.1179/jbr.1992.17.2.185
Seel W.E., Hendry G.A.F., Lee J.A. Effects of desiccation on some activated oxygen processing enzymes and antioxidants in mosses. J. Exp. Bot. 1992. 43(253): 1031–37. http://doi.org/10.1093/jxb/43.8.1031
Davey M.C. Effects of short-term dehydration and rehydration on photosynthesis and respiration by Antarctic bryophytes. Environ. Exp. Bot. 1997. 37: 187–98. http://doi.org/10.1016/S0098-8472(96)01052-0
Lewis Smith R.I. Biological and environmental characteristics of three cosmopolitan mosses dominant in continental Antarctica. J. Veg. Sci. 1999. 10(2): 231–42. http://doi.org/10.2307/3237144
Dupliy V.P., Matveyeva N.A., Shakhovskiy A.M. Ukrainskiy Antarkticheskiy (Zhurnal Ukrainian Antarctic Journal). 2011–2012. (10–11). 263–71. [in Russian].
Ono K., Murasaki Y., Takamiya M. Induction and morphogenesis of cultured cells of bryophytes. J. Hattori Bot. Lab. 1988. 65(12): 391–401.
Takami S., Yasunaga M., Takio S. et al. Establishment of suspension cultures of cells from the hornwort, Anthoceros punctatus L. J. Hattori Bot. Lab. 1988. 64(6): 429–35.
Felix H. Calli, cell and plantlet suspension cultures of bryophytes. Candollea. 1994. 49(1): 141–58.
Gang Y.Y., Du G.S., Shi D.J. et al. Establishment of in vitro regeneration system of the Atrichum mosses. Acta Bot. Sinica. 2003. 45: 1475–80.
Sabovljević M., Bijelović A., Dragicević I. In vitro culture of mosses: Aloina aloides (K.F.Schultz) Kindb., Brachythecium velutinum (Hedw.) B.S. & G., Ceratodon purpureus (Hedw.) Brid., Eurhynchium praelongum (Hedw.) B.S. & G. and Grimmia pulvinata (Hedw.) Sm. Turk. J. Bot. 2003. 27: 441–46.
Ward M. Callus tissues from the mosses Poly-trichum and Atrichum. Science. 1960. 132(3437): 1401–02. http://doi.org/10.1126/science.132.3437.1401
Murashige T., Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Phys. Plant. 1962. 15(3): 473–97. http://doi.org/10.1111/j.1399-3054.1962.tb08052.x
Chodhury S., Panda S.K. Toxic effects, oxi-dative stress and ultrastructural changes in moss Taxithelium nepalense (Schwaegr.) Broth. under chromium and lead phytotoxicity. Water, Air, Soil Pollution. 2005. 167: 73–90. http://doi.org/10.1007/s11270-005-8682-9
Clemens S. Molecular mechanisms of plant metal tolerance and homeostasis. Planta. 2001. 212(4): 475–86. http://doi.org/10.1007/s004250000458
Tashirev A.B., Romanovskaya V.A., Sioma I.B. Dopovidi NANU. 2008. (1): 169–76. [in Russian].
Tashirev A.B., Matvieieva N.A., Romanovskaya V.A. Dopovidi NANU. 2007. (11): 70–75. [in Russian].
Huner N.P.A., Öquist G., Hurry V.M., Krol M., Falk S., Griffith M. Photo-synthesis, photoinhibition and low temperature acclimation in cold tolerant plants. Photosynth. Res. 1993. 37(1): 19–39. http://doi.org/10.1007/BF02185436
Hurry V.M., Keerberg O., Pärnik T., Gardeström P., Öquistet G. Cold-hardening results in increased activity of enzymes involved in carbon metabolism in leaves of winter rye (Secale cereale L.). Planta. 1995. 195(4): 554–62. http://doi.org/10.1007/BF00195715
Tashiro T., Wardlaw I.F. The effect of high temperature on the accumulation of dry matter, carbon and nitrogen in the kernel of rice. Func. Plant Biol. 1991. 18(3): 259–65.
Peng S., Huang J., Sheehy J.E., Laza R.C., Visperas R.M., Zhong X., Centeno G.S., Khush G.S., Cassman K.G. Rice yields decline with higher night temperature from global warming. PNAS. 2004. 101(27): 9971–75. http://doi.org/10.1073/pnas.0403720101
Zakaria S., Matsuda T., Tajima S., Nitta Y. Effect of high temperature at ripening stage on the reserve accumulation in seed in some rice cultivars. Plant Prod. Sci. 2002. 5: 160–68. http://doi.org/10.1626/pps.5.160
Stitt M., Hurry V. A plant for all seasons: alterations in photosynthetic carbon metabolism during cold acclimation in Arabidopsis. Curr. Opin. Plant Biol. 2002. 5: 199–206. http://doi.org/10.1016/S1369-5266(02)00258-3
Guy C., Kaplan F., Kopka J., Selbig J., Hincha D.K. Metabolomics of temperature stress. Phys. Plant. 2008. 2(132): 220–35.
Chatterton N.J., Harrison P.A., Bennett J.H., Thornley W.R. Fructan, starch and sucrose concentrations in crested wheatgrass and redtop as affected by temperature. Plant. Physiol. Biochem. 1987. 25: 617–23.
Pollock C.J. Sucrose accumulation and the initiation of fructan biosynthesis in Lolium temulentum L. New Phytol. 1984. 96: 527–34. http://doi.org/10.1111/j.1469-8137.1984.tb03586.x