The method for RT-32 radio telescope error matrix construction in automatic mode. Automatic assesment of tracking errors
DOI:
https://doi.org/10.15407/knit2021.06.053Keywords:
antenna system, radio sources, radio telescope, tracking error matrixAbstract
On March 15th, 2021, scientists of the National Space Facilities Control and Tests Center and the Radio Astronomical Institute of the National Academy of Sciences of Ukraine carried out preliminary observations with the Ukrainian new generation radio telescope RT-32 (Zolochiv, Lviv region). The extragalactic radiation of radio galaxy 3C84 (Perseus-A), masers from the galactic molecular cloud W3, radio emission of methanol maser from the galactic radio source G188.946 + 0.886 were observed and successfully recorded. Observations were performed as training in the framework of preparation for the launch of a joint Ukrainian-Latvian radio astronomy project lzp-2020/2-0121. The results of the observations confirmed the world level of RT-32 radio telescope characteristics, the efficiency of the primary error matrix and revealed several shortcomings in the functioning of the tracking system. It was found that the primary tracking error matrix has insufficient discreteness and contains errors of the first and second types. In the article, we present a method of automatic construction of the radio telescope error matrix according to the data of a radiometric receiver and receivers-recorders. The method of construction provides automatic processing of the obtained radiometric data. The results of verification of the developed method using the reference radio sources of different types and the elements of tracking errors’ matrix by the elevation and azimuth obtained when using it are presented. The results obtained with the proposed method were included in the radio telescope control system and allowed us to increase the aiming accuracy of the RT-32 radio telescope.References
Antyufeyev А. V., Korolev А. М., Patoka O. M., Shulga V. M., Ulyanov О. М., Reznichenko O. М., Zakharenko V. V., Prisiazhnii V. I., Poikhalo А. V., Voityuk V. V., Mamarev V. N., Ozhinskyi V. V., Vlasenko V. P., Chmil V. M., Lebed V. I., Palamar M. I., Chaikovskii А. V., Pasternak Yu. V., Strembitskii M. A., Natarov М. P., Steshenko S. O., Glamazdyn V. V., Shubny A. S., Kirilenko А. А., Kulik D. Y., Pylypenko A. M. (2019). Creating the RT-32 Radio Telescope on the Basic of MARK-4B Antenna System. 2. Estimation of the Possibility for Making Spectral Observations of Radio Astronomical Objects. Radiofizyka i radioastronomiia, 24, № 3, 163-183. URL: http://rpra-journal.org.ua/index.php/ra/article/view/ (Last accessed: 19.03.2021). DOI: https://doi.org/10.15407/rpra24.03.163.
https://doi.org/10.15407/rpra24.03.163
Vlasenko V., Mamarev V., Ozhinskyi V., Ulyanov O., Zakharenko V., Palamar M., Chaikovskyi A. (2021). Method of constructing the primary error matrix of the RT-32 radio telescope in an automated mode. Space Sci. and Technol., 27 (3), 66-75. DOI: https://doi.org/10.15407/knit2021.032.
https://doi.org/10.15407/knit2021.03.066
Klepko V. Yu., Golets V. L. (2009). Hyperboloids. Higher Mathematics in Examples and Problems: 2nd edition. К.: The study literature center.
Ulyanov O. M., Zakharenko V. V., Alekseev E. A., Reznichenko O. M., Kulahin I. O., Budnikov V. V., Prysiazhnii V. I., Poikhalo A. V., Voitiuk V. V., Mamariev V. M., Ozhinskyi V. V., Vlasenko V. P., Chmil V. M., Sunduchkov I. K., Berdar M. M., Lebid V. I., Palamar M. I., Chaikovskii A. V., Pasternak Yu. V., Strembytskii M. P., Natarov S. O., Steshenko V. V., Glamazdin
O. I., Shubnyi A. O., Kyrylenko M. A., Kulyk D. Yu. (2020). The RT-32 Radio Telescope Construction Based on the MARK-4B Antenna System. 3. Local Oscillators and Self-Noise of the Receiving System. Radiofizyka i radioastronomiia, 25 (3), 175-192. URL: http://rpra-journal.org.ua/index.php/ra/article/view/1335 (Last accessed: 19.03.2021). DOI: https://doi.org/10.15407/rpra25.03.175.
https://doi.org/10.15407/rpra25.03.175
Ulyanov О. М., Reznichenko O. М., Zakharenko V. V., Antyufeyev А. V., Korolev А. М., Patoka O. M., Prisiazhnii V. I., Poikhalo А. V., Voityuk V. V., Mamarev V. N.,Ozhinskyi V .V., Vlasenko V. P., Cmil V. M., Lebed V. I., Palamar M. I., Chaikovskii А. V., Pasternak Yu. V., Strembitskii M. A., Natarov М. P., Steshenko S. O., Glamazdyn V. V., Shubny A. S., Kirilenko
А. А., Kulik D. Y., Konovalenko А. А., Lytvynenko L. M., Yatskiv Ya. S. (2019). Creating the RT-32 Radio Telescope on the Basic of MARK-4B Antenna System. 1. Modernization Project and First Results. Radiofizyka i radioastronomiia, 24 (2), 87-116. URL: http://rpra-journal.org.ua/index.php/ra/article/view/1309/973 (Last accessed: 19.03.2021). DOI: https://doi.org/10.15407/rpra 24.02.087.
Korn G. A., Korn T. M. (1968). Mathematical handbook for scientists and engineers. Definitions, theorems and formulas for reference and review. New York, San Francisco, London, Sydney, McGraw-Hill Book Company.
Levenberg K. (1944). A method for the solution of certain problems in least squares. Quart. Appl. Math., № 2, 164-168.
https://doi.org/10.1090/qam/10666
MARK-4B. Operation and maintenance handbook for antenna subsystem. Book 1. Part 1. Antenna structure. Tokyo. Japan, NEC Corporation, 1986.
Marquardt D. (1963). An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math., № 11, 431-441.
https://doi.org/10.1137/0111030
Ozhinskyi V. V., Vlasenko V. P., Poikhalo A. V. (2020). Radio telescope RT-32 in space researches. 20-th Gamow International Astronomical Conference-School "Astronomy and beyond: Astrophysics, cosmology and gravitation, high energy physics, astroparticle physics, radioastronomy and astrobiology" (9-16 August, 2020, Odessa, Ukraine).
Satellite Communications Earth Station Antenna System MARK-4B. Nippon Electric Co. Ltd, Tokyo, Japan, 1983.
Ulyanov O. (2019). The New Ukrainian Radiotelescope RT-32. First Results. International Workshop "RT-32 Zolochiv: First results, eu collaboration, radio astronomy frontiers" (Оctober 3-5, 2019, Zolochiv, Ukraine).