Out-of-plane relative motion of a spacecraft with an aerodynamic compensator during contactless space debris removal
DOI:
https://doi.org/10.15407/knit2021.02.015Keywords:
aerodynamic compensator, out-of-plane direction, propellant consumption, relative motion control, space debris removal, the “ion beam shepherd” conceptAbstract
The article investigates the feasibility of using an aerodynamic compensator for contactless removal of space debris from low Earth orbits, taking into account aerodynamic disturbances in the direction perpendicular to the orbital plane. The object of the research is a modified scheme of the “ion beam shepherd” de-orbiting concept. The modification consists in replacing an additional electric thruster with an aerodynamic compensator designed to compensate the shepherd spacecraft motion caused by the reaction force of the main electric thruster, the ion plume of which creates a “braking” effect on the space debris object. The shepherd spacecraft with the aerodynamic compensator has a relatively large cross-sectional area. In this case, it is necessary to control the relative motion caused by the aerodynamic disturbances in the direction perpendicular to the orbital plane. This control requires additional propellant for the thrusters of the relative motion control system of the shepherd spacecraft. The article presents the calculation of the propellant consumption using a number of simplifying assumptions. The validity of these assumptions is verified by numerical integration of the equations of relative motion. The feasibility of using the aerodynamic compensator for contactless removal of space debris, taking into account aerodynamic disturbances acting in the direction perpendicular to the orbital plane, is shown.
References
Alpatov A. P., Svorobin D. S., Skoryk O. D. (2016). System for contactless removal of space debris from near-Earth orbits using an aerodynamic compensator. Techn. Mech., № 3, 51—56 [in Ukrainian].
Dron М. М., Golubek О. V., Dreus А. Yu., Dubovik L. G. (2019). Prospects for the use of the combined method for deorbiting of large-scale space debris from near-Earth space. Space Sci. and Technol., 25(6), 61—69 [in Russian].
https://doi.org/10.15407/knit2019.06.061
Svorobin D. S., Fokov A. A., Khoroshylov S. V. (2018). Analysis of the feasibility of using an aerodynamic compensator for contactless removal of space debris. Aerospace eng. and technol., № 6, 4—11 [in Russian].
Khoroshylov S. V. (2018). Relative motion control system of spacecraft for contactless space debris removal. Sci. innov., 14(4), 5—16.
https://doi.org/10.15407/scine14.04.005
Khoroshylov S. V. (2019). The low to control the in-plane relative motion of a spacecraft for contactless space debris removal. Space Sci. and Technol., 25(1), 14—26 [in Russian].
https://doi.org/10.15407/knit2019.01.014
Alpatov A., Khoroshylov S., Bombardelli C. (2018). Relative control of an ion beam shepherd satellite using the impulse compensation thruster. Acta Astronaut., 151, 543—554.
https://doi.org/10.1016/j.actaastro.2018.06.056
Alpatov A. P., Maslova A. I., Khoroshylov S. V. (2018). Contactless de-orbiting of space debris by the ion beam. Dynamics and Control. Beau Bassin: LAP Lambert Academic Publishing.
https://doi.org/10.15407/akademperiodyka.383.170
Bombardelli C., Merino M., Ahedo E., Pelaez J., Urrutxua H., Iturri-Torreay A., Herrera-Montojoy J. (2011). Ariadna call for ideas: Active removal of space debris ion beam shepherd for contactless debris removal. ESA Techn. rept, 90.
Bombardelli C., Pelaez J. (2011). Ion beam shepherd for contactless space debris removal. J. Guidance, Control, and Dyn., 34(3), 916—920.
https://doi.org/10.2514/1.51832
Bombardelli C., Urrutxua H., Merino M., Ahedo E., Pelaez J. (2012). Relative dynamics and control of an ion beam shepherd satellite. Adv. Astronaut. Sci., 143 p.
Khoroshylov S. (2019). Out-of-plane relative control of an ion beam shepherd satellite using yaw attitude deviations. Acta Astronaut., 164, 254—261.
https://doi.org/10.1016/j.actaastro.2019.08.016
Kumara K. D., Bang H. C., Tahk M. J. (2007). Satellite formation flying using along-track thrust. Acta Astronaut. 61(7–8), 553—564.
https://doi.org/10.1016/j.actaastro.2007.01.069
Lawden D. F. (1963). Optimal trajectories for space navigation. London: Butterworths.
Leonard. C. L., Hollister W. M., Bergmann E. V. (1989). Orbital formation keeping with differential drag. J. Guidance, Control. and Dyn., 12(1), 108—113.
https://doi.org/10.2514/3.20374
Markley F. L., Crassidis J. L. (2014). Fundamentals of spacecraft attitude determination and control. New York: Springer Science + Business Media.
https://doi.org/10.1007/978-1-4939-0802-8
Reid T, Misra A. (2011). Formation flight of satellites in the presence of atmospheric drag. J. Aerosp. Eng. Sci. Appl., 3(1), 64—91.
https://doi.org/10.7446/jaesa.0301.05
Starin R. S., Yedavalli R. K., Sparks A.G. (2001). Spacecraft formation flying maneuvers using linear-quadratic regulation with no radial axis inputs. AIAA Pap., 1—9.
https://doi.org/10.2514/6.2001-4029
Vallado D. A. (2007). Fundamentals of astrodynamics and applications. Hawthorne, CA: Microcosm Press.