A review and analysis of existing guided precision airdrop systems
DOI:
https://doi.org/10.15407/knit2023.05.033Keywords:
a dynamically similar model, designing schema, guided precision airdrop system, parachute systemAbstract
The development of airdrop systems for special landing sites of rocket-space techniques, such as rocket engines or boosters of the first stages of launch vehicles, which are salvageable or reusable, is an actual problem today. The traditional parachute systems don’t always provide the necessary accuracy for completing a flight task, and this significantly increases the risk of dangerous situations for civilians and infrastructure. The article is devoted to the study of the analysis of existing guided precision airdrop systems. The design features of various types of guided precision airdrop systems and their technical characteristics are considered. The main advantages and disadvantages of the considered guided precision airdrop systems are determined. Based on the analysis, a typical design scheme has been developed for a typical representative of the family of guided precision airdrop systems. It is shown that the exploitation of experimental tests of the developed typical structural scheme with a physical dynamically similar model is the most effective and rational. A dynamically similar model has been developed for testing the automatic control system and for conducting experimental studies of the design of controlled systems for guided precision airdrop systems. The prospects for further research are discussed and aimed at developing a family of controlled systems for guided precision airdrop systems through the use of an experimental system for testing modifications to the layout and designs of the basic model using the principle of scaling according to the theory of similarity.References
Aruvelli S. V., Dolgov O. S. (2017). Requirements and operating conditions of aviation cargo delivery systems in hard-toreach areas. Transport. Aviation. Quality and life, № 3, 11-16.
https://www.ql-journal.ru/arc/2017_3.pdf [in Russian].
The Armed Forces received American guided cargo landing systems. (2020).
URL: https://mil.in.ua/uk/news/zsu-otrymaly-amerykanski-kerovani-systemy-desa. (Last accessed: January 30, 2023) [in Ukrainian].
Prokofiev S. (2019). Foreign parachute systems for dropping cargo.
URL: https://invoen.ru/vvt/zarubezhnie-parashutniesistemi-desantirovanie-gruzov/ (Last accessed: January 30, 2023) [in Russian].
Shtupun O. (2019).Chernihiv scientists test American parachutes for air defense and landing.
URL: https://armyinform.com.ua/2019/08/20/amerykanski-parashuty-dlya-sso-ta-d. (Last accessed: January 30, 2023) [in Ukrainian].
Benney R., Krainski W., Onckelinx P., Delwarde C., Mueller L., Vallance M. (2006). NATO Precision Airdrop Initiatives and Modeling and Simulation Needs. RTO Applied Vehicle Technology (AVT-133) specialist meeting on Fluid Dynamics of Personnel and Equipment Precision Delivery from Military Platforms (October 2-6 2006, Vilnius, Lithuania).
URL: https://www.researchgate.net/publication/235099001_NATO_ Precision_Airdrop_Initiatives_and_Modeling_and_Simulation_Needs (Last accessed: January 30, 2023).
Cacan M. R., Scheuermann E., Ward M., Costello M., Slegers N. (2015). Autonomous Airdrop Systems Employing Ground Wind Measurements for Improved Landing Accuracy. IEEE/ASME Transactions on Mechatronics, 20, № 6, 3060-3070.
https://doi.org/10.1109/TMECH.2015.2405851
Civelek B., Kivrak S. (2019). A Review on the Precision Guided Airdrop Systems. Int. J. Latest Technology in Engineering. Management & Applied Sci., 8, № I, 13-17. https://www.ijltemas.in/DigitalLibrary/Vol.8Issue1/13-17.pdf
de Freitas E. P., Olszewska J. I., Carbonera J. L., Fiorini S. R., Khamis A., Ragavan S. V., Barreto M. E., Prestes E., Habib M. K., Redfield S. (2020). Ontological concepts for information sharing in cloud robotics. J. Ambient Intelligence and Humanized Computing, 1-12.
https://doi.org/10.1007/s12652-020-02150-4
Dek C., Overkamp J.-L., Toeter A., Hoppenbrouwer T., Slimmens J., Zijl J. van, Areso P., Ricardo M. R., Hereijgers S., Kilic V., Naeije M. (2020). A recovery system for the key components of the first stage of a heavy launch vehicle. Aerospace Sci. and Technology, 100, 105778. https://doi.org/10.1016/j.ast.2020.105778
https://doi.org/10.1016/j.ast.2020.105778
Dunker S., Huisken J., Montague D., Barber J. (2015). Guided Parafoil High Altitude Research (GPHAR) Flight at 57,122ft. Proc. 23rd AIAA Aerodynamic Decelerator Systems Technology Conf. (Daytona Beach, FL).
https://doi.org/10.2514/6.2015-2121
Fiorini S. R., Bermejo-Alonso J., Goncalves P., de Freitas E. P., Alarcos A. O., Olszewska J. I., Prestes E., Schlenoff C., Ragavan S. V., Redfield S. (2017). A suite of ontologies for robotics and automation. IEEE Robotics and Automation Magazine, 24, № 1, 8-11.
https://doi.org/10.1109/MRA.2016.2645444
FireFly® Guided Precision Aerial Delivery System. URL: https://airborne-sys.com/wp-content/uploads/2016/08/ASGFireFly-20170207-. (Last accessed: January 30, 2023).
Gladky E. G. (2015). Determination of the hazardous zones in the impact areas of separated parts of launch vehicles under the uncertain altitude of their initial destruction. Space Science and Technology, 21, № 6 (97), 49-55.
https://doi.org/10.15407/knit2015.06.049
Gladky E. G. (2019). Evaluation of hazard for linear objects in case of launch vehicle failure in flight phase. Space Science and Technology, 25, № 4 (119), 22-28.
https://doi.org/10.15407/knit2019.04.022
Guo Y., Yan J., Wu C., et al. (2021). Autonomous Homing Design and Following for Parafoil / Rocket System with High altitude. J. Intelligent & Robotic Systems, 101, № 73.
https://doi.org/10.1007/s10846-021-01339-9
Herrington S. M., Renzelman J. T., Fields T. D., Yakimenko O. A. (2019). Modeling and control of a steerable cruciform parachute system through experimental testing. AIAA Scitech 2019 Forum. https://doi.org/10.2514/6.2019-1074
https://doi.org/10.2514/6.2019-1074
Hu Z., Vambol O., Sun S. (2021). A hybrid multilevel method for simultaneous optimization design of topology and discrete fiberorientation. Composite Structures, 266, 113791. https://doi.org/10.1016/j.compstruct.2021.113791
https://doi.org/10.1016/j.compstruct.2021.113791
Jorgensen D., Hickey M. (2005). The AGAS 2000 Precision Airdrop System. Infotech @ Aerospace: Arlington, VA, USA, 1-11.
https://doi.org/10.2514/6.2005-7072
Jóźwiak A., Kurzawiński S. (2019). The concept of using the joint precision airdrop system in the process of supply in combat actions. Military Logistics Systems, 51, № 2, 27-42. https://doi.org/10.37055/slw/129219
https://doi.org/10.37055/slw/129219
Kaminer I., Yakimenko O. (2003). Development of control algorithm for the autonomous gliding delivery system. Proc. 17th AIAA Aerodynamic Decelerator Systems Technology Conf. and Seminar (Monterey, CA, USA, 19-22 May 2003), 2116.
https://doi.org/10.2514/6.2003-2116
Klinkmueller K., Wieck A., Holt J., Valentine A., Bluman J. E., Kopeikin A., Prosser E. (2019). Airborne delivery of unmanned aerial vehicles via joint precision airdrop systems. Proc. AIAA Scitech 2019 Forum (San Diego, CA, USA, 7-11 January 2019).
https://doi.org/10.2514/6.2019-2285
Kondratiev A., Gaidachuk V., Nabokina T., Tsaritsynskyi A. (2020). New possibilities in creating of effective composite size stable honeycomb structures designed for space purposes. Integrated Computer Technologies in Mechanical Engineering. Adv. Intel.Syst. and Computing book ser. AISC 1113, № 5, 45-59.
https://doi.org/10.1007/978-3-030-37618-5_5
Kondratiev А. V., Kovalenko V. O. (2019). Optimization of design parameters of the main composite fairing of the launch vehicle under simultaneous force and thermal loading. Space Science and Technology, 25, № 4 (119), 3-21.
https://doi.org/10.15407/knit2019.04.003
Knacke T. W. Parachute Recovery Systems Design Мanual. Naval Weapons Center, China Lake, CA. Para-Publishing, Santa Barbara, CA 91340-4232, 5-5, 5-118, 5-119.
Kurennov S., Barakhov K., Vambol O. (2022). Topological optimization of a symmetrical adhesive joint. Island model of genetic algorithm. Radioelectronic and Computer Systemsthis, 2022(3), 67-83. https://doi.org/10.32620/reks.2022.3.05
https://doi.org/10.32620/reks.2022.3.05
Lingard J. S. (1995). Raм-air parachute design. 13th AIAA Aerodynamic Decelerator Systems Technology Conf. (Cyearwater Beach, Мay, 1995). Modern parachute precision aerial delivery systems.
Ma L., Wang K., Shao Z., Song Z., Biegler L. T. (2018). Direct trajectory optimization framework for vertical takeoff and vertical landing reusable rockets: case study of two-stage rockets. Engineering Optimization, 51, № 4, 627-645.
https://doi.org/10.1080/0305215X.2018.1472774
MicroFly II® Guided Precision Aerial Delivery System.
URL: https://airborne-sys.com/wp-content/uploads/2016/08/ASG-MicroFly-II-2017. (Last accessed: January 30, 2023).
Murali N., Dineshkumar M., Arun K. W., Sheela D. (2014). Guidance of parafoil using line of sight and optimal control. IFAC Proc., 47, 870-877.
https://doi.org/10.3182/20140313-3-IN-3024.00033
Onyx ML® Precision Airdrop System.
URL: http://www.cimsa.com/pdf/parachute/ONYX%20%20ML_ENG.pdf (Last accessed: January 30, 2023).
Pramod A., Shankaranarayanan H., Raj A. A. B. (2021). A Precision Airdrop System for Cargo Loads Delivery Applications. Int. Conf. System, Computation, Automation and Networking (ICSCAN), 1-5. https://doi: 10.1109/ICSCAN53069.2021.9526453
https://doi.org/10.1109/ICSCAN53069.2021.9526453
Rakesh R., Harikumar R. (2019). Autonomous Airdrop System Using Small-Scale Parafoil. Int. Conf. Computer Communication and Informatics (ICCCI), 1-6.
https://doi.org/10.1109/ICCCI.2019.8822085
Rimani J., Viola N., Saluzzi A. (2022). An Approach to the Preliminary Sizing and Performance Assessment of Spaceplanes'Landing Parafoils. Aerospace, 9, 823. https://doi.org/10.3390/aerospace9120823
https://doi.org/10.3390/aerospace9120823
Slyvyns'kyy V., Gajdachuk V., Kirichenko V., Kondratiev A. (2012). Basic parameters' optimization concept for composite nose fairings of launchers. 62nd Int. Astronautical Congress, IAC 2011 (Cape Town, 3-7 October 2011). Red Hook, NY: Curran, 9, 5701-5710.
Tománek R., Hospodka J. (2018). Reusable Launch Space Systems. Magazine of Aviation Development (MAD), 6, № 2, 10-13.
https://doi.org/10.14311/MAD.2018.02.02
Vambol O., Kondratiev A., Purhina S., Shevtsova M. (2021). Determining the parameters for a 3D-printing process using the fused deposition modeling in order to manufacture an article with the required structural parameters. Eastern-European J. Enterprise Technologies, 2, № 1(110), 70-80.
https://doi.org/10.15587/1729-4061.2021.227075
Wailes W., Harrington N. The Guided Parafoil Airborne Delivery System Program. 13th Aerodynamic Decelerator Systems Technology Conf. (15-18 May 1995, Clearwater Beach, FL, USA). https://doi.org/10.2514/6.1995-1538
https://doi.org/10.2514/6.1995-1538
Wegereef J., Leiden B. V., Jentink H. (2007). Modular Approach of Precision Airdrop System SPADES. Proc. 19th AIAA Aerodynamic Decelerator Systems Technology Conf. and Seminar (Williamsburg,VA, May 21-24, 2007).
https://doi.org/10.2514/6.2007-2547
Weinzierl M. (2018). Space, the Final Economic Frontier. J. Economic Perspectives, 32, № 2, 173-192.
https://doi.org/10.1257/jep.32.2.173
Xing X., Feng L., Chen M., Han Y., Guo Y., Chen X. (2022). Modeling and research of a multi-stage parachute system for the booster recovery. Proc. Institution of Mechanical Engineers. Part G: J. Aerospace Engineering.
https://doi.org/10.1177/09544100221118238
Zhang M., Xu D., Yue S., Tao H. (2018). Design and dynamic analysis of landing gear system in vertical takeoff and vertical landing reusable launch vehicle. Proc. Institution of Mechanical Engineers. Part G. J. Aerospace Engineering.