Вплив дидактичних супутників на рівень розвитку космічної інженерії: огляд
DOI:
https://doi.org/10.15407/knit2022.02.039Ключові слова:
CubeSat, аналіз даних, дидактика, космічна інженерія, рівень технологічної готовності, супутникАнотація
Космічні технології набувають все більшого значення в сучасному суспільстві. Маючи багато застосувань у повсякденному житті, вони обумовлюють подальший прогрес та добробут людства. Звідси витікає необхідність забезпечення відповідного рівня навчання, досліджень і розробок у цій галузі освоєння космосу. У статті розглядається використання малих супутників для отримання базових знань у галузі космічних технологій. Подальший розвиток цих знань веде до створення космічних місій, які в свою чергу забезпечують прогрес рівня технологічної готовності (TRL), визначеного міжнародною шкалою вимірювань. Цей рівень характеризує загальну технологічну зрілість суспільства. У огляді робиться висновок, що використання недорогих або навчальних супутників може сприяти вдосконаленню знань молодих інженерів і конструкторів та демонстрації важливості космічних досліджень. Ми вважаємо, що для досягнення цієї мети можна використати вбудовані компоненти з функціями, аналогічними смартфонам. В статті обговорюються два типи таких компонентів для демонстрації їх ефективності в космічних інженерних розробках.
Посилання
Bouwmeester J., Guo J. Survey of worldwide pico-and nanosatellite missions, distributions and subsystem technology. Acta Astronautica. 67, 854-862 (2010).
https://doi.org/10.1016/j.actaastro.2010.06.004
Batista C. L. G., et al. Towards increasing nanosatellite subsystem robustness. Acta Astronautica. 156, 187-196 (2019).
https://doi.org/10.1016/j.actaastro.2018.11.011
Denby B., Lucia B. Orbital edge computing: Nanosatellite constellations as a new class of computer system. In Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems, p. 939-954 (March 2020).
https://doi.org/10.1145/3373376.3378473
Shakhmatov E., et al. SSAU project of the nanosatellite SamSat-QB50 for monitoring the Earth's thermosphere parameters. Procedia Engineering. 104, 139-146 (2015).
https://doi.org/10.1016/j.proeng.2015.04.105
Camps A. Nanosatellites and applications to commercial and scientific missions. Satell. Mission. Technol. Geosci. p. 145-169 (2020).
https://doi.org/10.5772/intechopen.90039
TEC-SHS E. S. A. Technology Readiness Levels Handbook for Space Applications. p. 1-66 (2008). Mode of access: https://artes.esa.int/sites/default/files/TRL_Handbook.pdf.
Straub J. In search of technology readiness level (TRL) 10. Aerospace Science and Technology. 46, 312-320 (2015).
https://doi.org/10.1016/j.ast.2015.07.007
Shishko R., Aster R. NASA systems engineering handbook. NASA Special Publication. 6105, p. 1-155 (1995).
Héder M. From NASA to EU: the evolution of the TRL scale in Public Sector Innovation. The Innovation Journal. 22, 1-23 (2017).
Shuman T., et al. Development of a TRL-5 conductively-cooled 2-micron laser transmitter for coherent doppler wind lidar system. Lidar Remote Sensing for Environmental Monitoring XIV. International Society for Optics and Photonics. 8872 (2013).
https://doi.org/10.1117/12.2024358
West J., et al. Bringing an effective solar sail design toward TRL 6. 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Huntsville, AL. p. 1-8 (2003).
Young R., et al. TRL assessment of solar sail technology development following the 20-meter system ground demonstrator hardware testing. In 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p. 2248 (2007).
https://doi.org/10.2514/6.2007-2248
Sanders S. Satellite Servicing Capabilities Office Testing. NASA USRP –Internship Final Report. p. 1-7 (2015).
Pierce R., et al. Stabilized lasers for space applications: a high TRL optical cavity reference system. In Quantum Electronics and Laser Science Conference pp. JW3C-3, Optical Society of America, San Jose, California United States. (2012).
https://doi.org/10.1364/CLEO_AT.2012.JW3C.3
Burton R., et al. State of the art in guidance navigation and control: A survey of small satellite GNC components. Proc. Adv. Astron. Sci. p. 157 (2016).
Kandala A., et al. Development of a Power-Efficient, Low Cost, and Flash FPGA Based On-Board Computer for Small-Satellites. 35th Annual Small Satellite Conference, Utah State University, Logan, UT. p. 1-5 (2021).
Kobald M., et al. Hybrid Sounding Rocket HEROS: TRL 9. In Proceedings of the 7th European Conference for Aeronautics and Aerospace Sciences (EUCASS), Milano, Italy. p. 3-7 (2017).
Olechowski A., et al. Technology readiness levels at 40: A study of state-of-the-art use, challenges, and opportunities. Portland international conference on management of engineering and technology (PICMET). IEEE. p. 2084-2094 (2015).
https://doi.org/10.1109/PICMET.2015.7273196
Nugent R., et al. The CubeSat: The Picosatellite Standard for Research and Education. AIAA SPACE 2008 Conference & Exposition9 - 11 September 2008, San Diego, California. p. 1-11 (2008).
Berk J., et al. The open prototype for educational NanoSats: Fixing the other side of the small satellite cost equation. IEEE Aerospace Conference. p. 1-16 (2013).
https://doi.org/10.1109/AERO.2013.6497393
Villela T., et al. Towards the thousandth CubeSat: A statistical overview. International Journal of Aerospace Engineering. 2019, p. 1-13 (2019).
https://doi.org/10.1155/2019/5063145
Vicente V. E., et al. Successful Development of a Portable Didactic Satellite for Training and Research in Satellite Technology. CORE-2009, 10th Computing Congress, CIC-IPN, México City. p. 1-8 (2009).
Vicente-Vivas V. E., et al. SATEDU the didactic satellite, from on-the job classroom training to space experimentation. International Conference on Engineering Education (ICEED), IEEE. p. 247-249 (2009).
https://doi.org/10.1109/ICEED.2009.5490573
Reyneri L., et al. PicPot: a small satellite with educational goals. Proc. 18th EAEEIE Conf. Innov. Edu. Elect. Inf. Eng. p. 1-4 (2007).
Ben Bahri O., et al. Smartphone didactic platform for satellite attitude determination demonstration and development. International Conference on Engineering & MIS (ICEMIS), IEEE. p. 1-4 (2017).
https://doi.org/10.1109/ICEMIS.2017.8273085
Mendoza B., et al. Embedded attitude control system for the educative satellite SATEDU. CONIELECOMP, 22nd International Conference on Electrical Communications and Computers, IEEE. p. 118-123 (2012).
Ben Bahri O., Besbes K. Didactic satellite based on Android platform for space operation demonstration and development. Advances in Space Research. 61, 1501-1511 (2018).
https://doi.org/10.1016/j.asr.2017.12.040
Pető M. CanSat, Arduino—Physics at Székely Mikó Science Club. Proc. of the Int. Conf. Teaching Physics Innovatively. Publisher: Graduate School for Physics, Faculty of Science, Eotvos Lorand University, Budapest, Hungary. p. 169-174 (2016).
Kawashima R. CanSat leader training program: past, present and future. Ciencia UANL. 19, 76-82 (2016).
Ramadhan R., et al. Prototype of CanSat with Auto-gyro Payload for Small Satellite Education. 13th International Conference on Telecommunication Systems, Services, and Applications (TSSA). IEEE. p. 243-248 (2019).
https://doi.org/10.1109/TSSA48701.2019.8985514
Aly H., et al. Project-based space engineering education: Application to autonomous rover-back CanSat. 6th International Conference on Recent Advances in Space Technologies (RAST). IEEE. p. 1087-1092 (2013).
https://doi.org/10.1109/RAST.2013.6581164
Miyazaki Y., Yamazaki M. A practical education of space engineering by using CanSat and pico-satellite-Fruitful collaboration with UNISEC for success of student satellite program. 6th International Conference on Recent Advances in Space Technologies (RAST). IEEE. p. 1081-1086 (2013).
Paudel S., et al. Development of CanSat Ground-Station using LabVIEW. Proceeding of MARS Summit, India. p. 1-4 (2017).
Pető M. Experiments with Cansat. ICPE-EPEC. p. 1-9 (2013).
Colin A. A pico-satellite assembled and tested during the 6th CanSat Leader Training Program. Journal of applied research and technology. 15, 83-91 (2017).
https://doi.org/10.1016/j.jart.2016.10.003
Kizilkaya M., et al. CanSat descent control system design and implementation. 8th International Conference on Recent Advances in Space Technologies (RAST). IEEE. p. 241-245 (2017).
https://doi.org/10.1109/RAST.2017.8002947
Ay S., et al. Design and navigation control of an advanced level CANSAT. Proceedings of 5th International Conference on Recent Advances in Space Technologies-RAST, IEEE. p. 752-757 (2011).
Çabuloğlu C., et al. Mission Analysis and Planning of a CANSAT. Proceedings of 5th International Conference on Recent Advances in Space Technologies-RAST, IEEE. p. 794-799 (2011).
https://doi.org/10.1109/RAST.2011.5966951
Ostaszewski M., et al. Analysis of data collected while CanSat mission. 19th International Carpathian Control Conference (ICCC). IEEE. p. 1-4 (2018).
https://doi.org/10.1109/CarpathianCC.2018.8399591
Colin A., Manuel J. L. The CanSat technology for climate Monitoring in small regions at altitudes below 1 km. IAA Climate Change & Disaster Management Conference. p. 1-9 (2015).
Islam T., et al. Design and Development of a Weather Monitoring Satellite, CanSat. 15th International Conference on Emerging Technologies (ICET). IEEE. p. 1-6 (2019).
https://doi.org/10.1109/ICET48972.2019.8994718
Sako N., et al. Cansat suborbital launch experiment-university educational space program using can sized pico-satellite. Acta Astronautica. 48, 767–776 (2001).
https://doi.org/10.1016/S0094-5765(01)00039-X
Gozalvez J. Smartphones Sent into Space [Mobile Radio]. Vehicular technology magazine, IEEE. p.13–18 (Sept 2013).
https://doi.org/10.1109/MVT.2013.2270897
Bridges C., et al. STRaND-1: The world's first smartphone nanosatellite. Space Technology (ICST), 2nd International Conference, IEEE. p. 1-3 (2011).
https://doi.org/10.1109/ICSpT.2011.6064651
Yamaura S., et al. Report of CanSat Leader Training Program. In Recent Advances in Space Technologies (RAST), 5th International Conference, IEEE. p. 856-860 (June 2011).