Машинне навчання для морфологічної класифікації галактик із огляду SDSS. II. Морфологічні каталоги зображень галактик на 0,02<z<0,1
DOI:
https://doi.org/10.15407/knit2022.01.003Ключові слова:
великомасштабна структура Всесвіту, згорткові нейронні мережі; галактики: морфологічна класифікація, зображення галактик, каталоги галактик, машинне навчання, Методи: аналіз данихАнотація
Ми застосували згорткову нейронну мережу (CNN) до вибірки зображень галактик на малих червоних зміщеннях із –24m<Mr<–19.4m огляду неба SDSS DR9. Ми розділили її на дві підвибірки галактик SDSS DR9 і галактик Galaxy Zoo 2 (GZ2), розглядаючи їх як цільову з невідомими параметрами (inference) та навчальну (training), відповідно. Щоб визначити основні морфологічні параметри галактик, визначені в рамках проекту GZ2, ми класифікували галактики на п’ять візуальних класів (повністю заокруглені, майже заокруглені, гладкі сигароподібні, видимі з ребра, спіральні). Використовуючи класифікацію морфології галактик GZ2, ми також визначити 34 морфологічні характеристики галактик із вибірки SDSS DR9, які не збігаються з навчальною підвибіркою галактик GZ2. У результаті ми створили морфологічний каталог зображень 315782 галактик на 0,02<z<0,1, де морфологічні п’ять класів і 34 детальні характеристики були вперше визначені для 216148 галактик із застосуванням CNN класифікатора. Для решти галактик початкову морфологічну класифікацію було перевизначено, як у проекті GZ2. Розроблений нами метод демонструє багатообіцяючу ефективність морфологічної класифікації, що досягає >93 % точності для прогнозування морфології п’яти класів, за винятком сигароподібних (~75 %) та повністю округлених (~ 83 %) галактик. В результаті були отримані каталоги 19468 повністю заокруглених, 27321 майже закруглених, 3235 сигароподібних, 4099 видимих з ребра, 18615 спіральних та 72738 інших галактик на малих червоних зміщеннях досліджуваної вибірки SDSS. Що стосується класифікації галактик за їх детальними структурними морфологічними особливостями, то наша модель CNN дає точність у діапазоні 92–99 % залежно від морфологічної ознаки та якості зображення галактики. Створено каталоги, де вперше 34 детальні морфологічні особливості (бар, кільця, кількість спіральних рукавів, злиття тощо) визначено для понад 160000 галактик цільової підвибірки SDSS DR9. Ми вперше показуємо, що застосування моделі CNN зі змагальною валідацією та математичними перетвореннями зображень галактик покращує класифікацію менших за розмірами та слабкіших mr <17.7 галактик SDSS. Запропонована модель CNN дозволяє вирішити різні проблеми класифікації галактик, наприклад, таких як швидкий відбір галактик із баром, балджем, кільцем та іншими морфологічними особливостями для їх подальшого аналізу.Посилання
Abul Hayat Md., Stein G., Harrington P. et al. Self-Supervised Representation Learning for Astronomical Images. eprint arXiv:2012.13083 (2020)
https://doi.org/10.3847/2041-8213/abf2c7
Ahn C.P., Alexandroff R., Allende Prieto C. et al. The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey. Astrophys. J. Suppl., 203, 2, 21 (2012)
https://doi.org/10.1088/0067-0049/203/2/21
Amiaux J., Scaramella R., Mellier Y. et al. Euclid mission: building of a reference survey. SPIE Proceedings, vol. 8442, Space Telescopes and Instrumentation: Optical, Infrared, and Millimeter Wave; 84420Z (2012)
https://doi.org/10.1117/12.926513
Aniyan A.K., Thorat K. Classifying Radio Galaxies with the Convolutional Neural Network. Astrophys. J. Suppl. Ser., 230, 2, 20 (2017).
https://doi.org/10.3847/1538-4365/aa7333
Babyk I.; Vavilova I. The distant galaxy cluster XLSSJ022403.9-041328 on the LX-TX-M scaling relations using Chandra and XMM-Newton observations. Astrophys. & Space Sci., 353, 2, 613-619 (2014).
https://doi.org/10.1007/s10509-014-2057-x
Baron Dalya. Machine Learning in Astronomy: a practical overview. eprint arXiv:1904.07248 (2019).
https://arxiv.org/pdf/1904.07248.pdf
Barchi P.H., de Carvalho R.R., Rosa R.R. et al. Machine and Deep Learning applied to galaxy morphology - A comparative study. Astronomy and Computing, 30, 100334 (2020)
https://doi.org/10.1016/j.ascom.2019.100334
Barrow J.D., Saich P. Growth of large-scale structure with a cosmological constant. Mon. Not. R. Astron. Soc., 262, 3, 717-725 (1993).
https://doi.org/10.1093/mnras/262.3.717
Bellm E.C., Kulkarni S.R., Graham M.J. et al. The Zwicky Transient Facility: System Overview, Performance, and First Results. Publications of the Astronomical Society of the Pacific, 131, 995, id. 018002, (2019).
https://doi.org/10.1088/1538-3873/aaecbe
Blanton M. R., Bershady M.A., Abolfathi B., Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe. Astron. J., 154, 28 (2017).
https://doi.org/10.3847/1538-3881/aa7567
Bottrell C., Hani M., Teimoorinia H. et al. Deep learning predictions of galaxy merger stage and the importance of observational realism. Mon. Not. R. Astron. Soc., 490, 4, 5390-5413(2019)
https://doi.org/10.1093/mnras/stz2934
Bradley A.P. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30, Issue 7, p. 1145-1159 (1997).
https://doi.org/10.1016/S0031-3203(96)00142-2
Brugere I., Gallagher B., Berger-Wolf T.Y. Network Structure Inference, A Survey: Motivations, Methods, and Applications. eprint arXiv:1610.00782 (2016).
https://arxiv.org/pdf/1610.00782.pdf
Bundy K., Scarlata C., Carollo C.M. The Rise and Fall of Passive Disk Galaxies: Morphological Evolution Along the Red Sequence Revealed by COSMOS. Astrophys. J., 719, 2, 1969-1983 (2010).
https://doi.org/10.1088/0004-637X/719/2/1969
Cabayol L., Eriksen M., Amara A. et al. The PAU survey: Estimating galaxy photometry with deep learning. Mon. Not. R. Astron. Soc., 506, 3, 4048-4069 (2021).
https://doi.org/10.1093/mnras/stab1909
Cabrera-Vives G., Miller C.J., Schneider J. Systematic Labeling Bias in Galaxy Morphologies. Astron. J., 156, 6, 284 (2018)
https://doi.org/10.3847/1538-3881/aae9f4
Cassata P., Giavalisco M., Guo Y. et al. The Relative Abundance of Compact and Normal Massive Early-type Galaxies and Its Evolution from Redshift z~2 to the Present. Astrophys. J., 743, 1, 96 (2011)
https://doi.org/10.1088/0004-637X/743/1/96
Chesnok N.G., Sergeev S.G.; Vavilova I.B. Optical and X-ray variability of Seyfert galaxies NGC 5548, NGC 7469, NGC 3227, NGC 4051, NGC 4151, Mrk 509, Mrk 79, and Akn 564 and quasar 1E 0754. Kinematics and Physics of Celestial Bodies, 25, 2, 107-113 (2009).
https://doi.org/10.3103/S0884591309020068
Chen Bo Han, Goto Tomotsugu, Kim Seong Jin. An active galactic nucleus recognition model based on deep neural network. Mon. Not. R. Astron. Soc., 501, 3, 3951-3961 (2021).
https://doi.org/10.1093/mnras/staa3865
Cheng Ting-Yun, Conselice C.J., Arag S. Optimizing automatic morphological classification of galaxies with machine learning and deep learning using Dark Energy Survey imaging. Mon. Not. R. Astron. Soc., 493, 3, 4209-4228 (2020)
https://doi.org/10.1093/mnras/staa501
Chen Yangyao , Mo H. J., Li Cheng. Relating the Structure of Dark Matter Halos to Their Assembly and Environment. Astrophys. J., 899, 1, 81 (2020).
https://doi.org/10.3847/1538-4357/aba597
Chilingarian I.V., Melchior A.-L., Zolotukhin I.Y. Analytical approximations of K-corrections in optical and near-infrared bands. Mon. Not. R. Astron. Soc., 405, 1409-1420 (2010).
https://doi.org/10.1111/j.1365-2966.2010.16506.x
Chilingarian I.V., Zolotukhin I.Y. A universal ultraviolet-optical colour-colour-magnitude relation of galaxies. Mon. Not. R. Astron. Soc., 419, 1727-1739 (2012).
https://doi.org/10.1111/j.1365-2966.2011.19837.x
Ciuca R., Hernandez O.F. A Bayesian framework for cosmic string searches in CMB maps. Journal of Cosmology and Astroparticle Physics, 8, 28, (2017).
https://doi.org/10.1088/1475-7516/2017/08/028
Davies R.L., Efstathiou G., Fall S.M. The kinematic properties of faint elliptical galaxies. Astrophys. J., 266, 41-57 (1983)
https://doi.org/10.1086/160757
Davis M., Efstathiou G., Frenk C. S., White S.D.M. The evolution of large-scale structure in a universe dominated by cold dark matter. Astrophys. J., Part 1, 292, 371-394 (1985).
https://doi.org/10.1086/163168
Dey A., Schlegel D.J., Lang D. et al. Overview of the DESI Legacy Imaging Surveys. Astron. J., 157, 5, 168 (2019)
https://doi.org/10.3847/1538-3881/ab089d
Diakogiannis F.I., Lewis G.F., Ibata R.A. Reliable mass calculation in spherical gravitating systems. Mon. Not. Roy. Astron. Soc., 482, 3, 3356-3372 (2019).
https://doi.org/10.1093/mnras/sty2931
de Diego J.A., Nadolny J., Bongiovanni A. Galaxy classification: deep learning on the OTELO and COSMOS databases. Astron. & Astrophys., 638, A134 (2020).
https://doi.org/10.1051/0004-6361/202037697
D'Isanto A., Cavuoti S., Gieseke F., Return of the features. Efficient feature selection and interpretation for photometric redshifts. Astron. & Astrophys., 616, A97 (2018).
https://doi.org/10.1051/0004-6361/201833103
Djorgovski S.G., Graham M.J., Donalek, C. Real-Time Data Mining of Massive Data Streams from Synoptic Sky Surveys. eprint arXiv:1601.04385 (2016).
https://arxiv.org/ftp/arxiv/papers/1601/1601.04385.pdf
https://doi.org/10.1016/j.future.2015.10.013
Dobrycheva D.V., Melnyk O.V., Vavilova I.B., Elyiv A.A. Environmental Properties of Galaxies at z < 0.1 from the SDSS via the Voronoi Tessellation. Odessa Astron. Publ., 27, 26 (2014)
Dobrycheva D.V. ,Melnyk O.V., Vavilova I.B. Environmental Density vs. Colour Indices of the Low Redshifts Galaxies. Astrophysics, 58, 2, 168-180 (2015).
https://doi.org/10.1007/s10511-015-9373-x
Dobrycheva D.V., The New Galaxy Sample from SDSS DR9 at 0.003 < z < 0.1. Odessa Astron. Publ., 26, 187 (2013).
Dobrycheva D.V., Morphological content and color indices bimodality of a new galaxy sample at the redshifts z < 0.1. PhD Thesis in Phys.-Math. Sciences, Kyiv, Main Astronomical Observatory, NAS of Ukraine, 132 p. (2017)
Dobrycheva D.V., I.B. and Melnyk, O.V., Morphological Type and Color Indices of the SDSS DR9 Galaxies at 0.02 < z < 0.06. Kinematics and Physics of Celestial Bodies, 34, 6, 290-301 (2018).
https://doi.org/10.3103/S0884591318060028
Dominguez-Sanchez H., Huertas-Company M., Bernardi M. et al. Improving galaxy morphologies for SDSS with Deep Learning. Mon. Not. Roy. Astron. Soc., 476, 3, 3661-3676 (2018)
https://doi.org/10.1093/mnras/sty338
Domínguez Sánchez H.; Margalef B.; Bernardi M.; Huertas-Company M. SDSS-IV DR17: Final release of MaNGA PyMorph photometric and deep learning morphological catalogs. Mon. Not. R. Astron. Soc., Advance Access.
https://doi.org/10.1093/mnras/stab3089
Dominguez Sanchez H., Vega-Ferrero J.; Huertas-Company M.; Bernardi M. Constructing the Largest Galaxy Morphological Catalogue with Supervised Deep Learning ... with No Training Sample. American Astronomical Society meeting #238, id. 119.01. Bulletin of the American Astronomical Society, Vol. 53, No. 6 e-id 2021n6i119p01
Du Wei, Cheng Cheng, Wu Hong et al. Low Surface Brightness Galaxy catalogue selected from the a.40-SDSS DR7 Survey and Tully-Fisher relation. Mon. Not. R. Astron. Soc., 483, 2, 1754-1795 (2019)
https://doi.org/10.1093/mnras/sty2976
Elyiv A., Melnyk O., Vavilova I. High-order 3D Voronoi tessellation for identifying isolated galaxies, pairs and triplets. Mon. Not. R. Astron. Soc., 394, 3, 1409-1418 (2009).
https://doi.org/10.1111/j.1365-2966.2008.14150.x
Elyiv A. A., Melnyk O.V., Vavilova, I.B., Machine-learning computation of distance modulus for local galaxies. Astron. & Astrophys., 635, A124 (2020).
https://doi.org/10.1051/0004-6361/201936883
Fluke Christopher J. ,Jacobs Colin. Surveying the reach and maturity of machine learning and artificial intelligence in astronomy. WIREs Data Mining and Knowledge Discovery, 10, 2, article id. e134910 (2020).
https://doi.org/10.1002/widm.1349
Gauthier A., Jain A., Noordeh E. Galaxy Morphology Classification. e-proceedings http://cs229.stanford.edu/proj2016/report/GauthierJainNoordeh-GalaxyMorp, p. 1-6 (2016)
George D., Huerta E.A. Deep neural networks to enable real-time multimessenger astrophysics, Phys. Rev. D 97, 044039 (2018).
https://doi.org/10.1103/PhysRevD.97.044039
George D., Huerta E.A. Deep Learning for real-time gravitational wave detection and parameter estimation: Results with Advanced LIGO data. Physics Letters B, 778, 64-70 (2018).
https://doi.org/10.1016/j.physletb.2017.12.053
Huerta E.A., Moore C.J., Kumar P. Eccentric, nonspinning, inspiral, Gaussian-process merger approximant for the detection and characterization of eccentric binary black hole mergers. Phys. Rev. D, 97, 2, id. 024031 (2018).
https://doi.org/10.1103/PhysRevD.97.024031
Huertas-Company M., Primack J.R., Dekel A., Deep Learning Identifies High-z Galaxies in a Central Blue Nugget Phase in a Characteristic Mass Range, Astrophys. J., 858, 2, 114 (2018).
https://doi.org/10.3847/1538-4357/aabfed
Ivezič Z., Kahn S.M, Tyson J. A. LSST: From Science Drivers to Reference Design and Anticipated Data Products. Astrophys. J., 873, 2, 111 (2019).
https://doi.org/10.3847/1538-4357/ab042c
Jacobs C., Collett T., Glazebrook K. Finding high-redshift strong lenses in DES using convolutional neural networks. Mon. Not. R. Astron. Soc., 484, 4, 5330-5349 (2019).
https://doi.org/10.1093/mnras/stz272
Kang Shi-Ju, Fan Jun-Hui, Mao Weiming et al. Evaluating the Optical Classification of Fermi BCUs Using Machine Learning. Astrophys. J., 872, 2, 189 (2019).
https://doi.org/10.3847/1538-4357/ab0383
Karachentseva V.E., Vavilova I.B. Clustering of Low Surface Brightness Dwarf Galaxies in the Local Supercluster. European Southern Observatory Conference and Workshop Proceedings, 49, 91-100 (1994)
Khalifa Nour Eldeen M., Taha Mohamed Hamed N., Hassanien Aboul Ella. Deep Galaxy: Classification of Galaxies based on Deep Convolutional Neural Networks. Eprint arXiv:1709.02245 (2017).
Khramtsov V., Dobrycheva D. V., Vasylenko M. Yu. Deep Learning for Morphological Classification of Galaxies from SDSS. Odessa Astron. Publ., 32, 21 (2019).
https://doi.org/10.18524/1810-4215.2019.32.182092
Khramtsov V. , Sergeyev A., Spiniello C. KiDS-SQuaD - II. Machine learning selection of bright extragalactic objects to search for new gravitationally lensed quasars. Astron. & Astrophys., 632, A56 (2019).
https://doi.org/10.1051/0004-6361/201936006
Khramtsov V., Vavilova I.B., Vasylenko M.Yu., Dobrycheva D.V., Elyiv A.A., Akhmetov V.S., Dmytrenko A., Khlamov S. Machine learning technique for morphological classification of galaxies from SDSS. III. CNN Image-based inference of detailed morphology. Astronomy and Computing (2022) (submitted)
https://doi.org/10.1051/0004-6361/202038981
Krause M., Pueschel E., Maier G. Improved gamma hadron separation for the detection of faint gamma-ray sources using boosted decision trees. Astroparticle Physics, 89, 1-9 (2017).
https://doi.org/10.1016/j.astropartphys.2017.01.004
Kugler S. D. , Gianniotis, N. Modelling multimodal photometric redshift regression with noisy observation. eprint arXiv:1607.06059 (2016).
https://arxiv.org/pdf/1607.06059.pdf
LeCun Yann, Chopra Sumit, Hadsell Raia et al. A tutorial on energy-based learning. In: Predicting Structured Data, MIT Press (2006) http://yann.lecun.com/exdb/publis/pdf/lecun-06.pdf
Leung E., Bekki K., While L. Automated Simulations of Galaxy Morphology Evolution using Deep Learning and Particle Swarm Optimisation. arXiv:1904.02906 (2019).
https://arxiv.org/ftp/arxiv/papers/1904/1904.02906.pdf
Lintott C.J., Schawinski K., Slosar A. et al. Galaxy Zoo: morphologies derived from visual inspection of galaxies from the Sloan Digital Sky Survey. Mon. Not. R. Astron. Soc., 389, 3, 1179-1189 (2008)
https://doi.org/10.1111/j.1365-2966.2008.13689.x
Lukic V., Bruggen, M., Banfield, J.K. Radio Galaxy Zoo: compact and extended radio source classification with deep learning. Mon. Not. R. Astron. Soc., 476, 1, 246-260 (2018).
https://doi.org/10.1093/mnras/sty163
Lupton R., Blanton M.R., Fekete G. Preparing Red-Green-Blue Images from CCD Data. Publications of the Astronomical Society of the Pacific, 116, 816, p. 133-137 (2004).
https://doi.org/10.1086/382245
Ma Zhixian, Xu Haiguang, Zhu Jie et al. A Machine Learning Based Morphological Classification of 14,245 Radio AGNs Selected from the Best-Heckman Sample. Astrophys. J. Suppl. Ser., 240, 2, 34 (2019).
https://doi.org/10.3847/1538-4365/aaf9a2
Mahabal A. A., Djorgovski S. G., Drake A.J., Discovery, classification, and scientific exploration of transient events from the Catalina Real-time Transient Survey. Bulletin of the Astronomical Society of India, 39, 3, 387-408 (2011)
Mahabal Ashish, Rebbapragada Umaa, Walters Richard. Machine Learning for the Zwicky Transient Facility. Publications of the Astronomical Society of the Pacific, 131, 997, id. 038002 (2019).
https://doi.org/10.1088/1538-3873/aaf3fa
Melnyk O.V., Dobrycheva D.V., Vavilova I.B. Morphology and color indices of galaxies in Pairs: Criteria for the classification of galaxies. Astrophysics, 55, 3, 293-305 (2012).
https://doi.org/10.1007/s10511-012-9236-7
Mezcua M., Lobanov A.P., Mediavilla E., Karouzos M. Photometric Decomposition of Mergers in Disk Galaxies. Astrophys. J., 784, 1., 16 (2014)
https://doi.org/10.1088/0004-637X/784/1/16
Mittal A., Soorya A., Nagrath P., Hemanth D.J. Data augmentation based morphological classification of galaxies using deep convolutional neural network. Earth Sci. Inform., 13, 601-617 (2020)
https://doi.org/10.1007/s12145-019-00434-8
Morello G., Morris P.W., Van Dyk S.D. Applications of machine-learning algorithms for infrared colour selection of Galactic Wolf-Rayet stars. Mon. Not. R. Astron. Soc., 473, 2, 2565-2574 (2018).
https://doi.org/10.1093/mnras/stx2474
Parikh T., Thomas D., Maraston C. et al. SDSS-IV MaNGA: local and global chemical abundance patterns in early-type galaxies. Mon. Not. R. Astron. Soc., 483, 3, 3420-3436 (2019)
https://doi.org/10.1093/mnras/sty3339
Pasquet-Itam J., Pasquet J., Deep learning approach for classifying, detecting and predicting photometric redshifts of quasars in the Sloan Digital Sky Survey stripe 82. Astron. & Astrophys., 611, A97 (2018).
https://doi.org/10.1051/0004-6361/201731106
Pearson W.J., Wang L., Trayford J.W. et al. Identifying galaxy mergers in observations and simulations with deep learning. Astron. Astrophys., 626, A49 (2019)
https://doi.org/10.1051/0004-6361/201935355
Peebles P.E., Principles of Physical Cosmology. Princeton Univ. Press, Princeton, New Jersey, 718 p. (1993).
Peng Ying-jie, Lilly S.J., Kova K. et al. Mass and Environment as Drivers of Galaxy Evolution in SDSS and zCOSMOS and the Origin of the Schechter Function. Astrophys. J., 721, 1, 193-221 (2010).
https://doi.org/10.1088/0004-637X/721/1/193
Rodriguez-Puebla A., Calette A.R., Avila-Reese V. et al. The bivariate gas-stellar mass distributions and the mass functions of early- and late-type galaxies at z~0. Publ. Astronomical Society of Australia, 37, article id. e024 (2020)
https://doi.org/10.1017/pasa.2020.15
Pulatova N.G.; Vavilova I.B.; Sawangwit U.; Babyk Iu.; Klimanov S. The 2MIG isolated AGNs - I. General and multiwavelength properties of AGNs and host galaxies in the northern sky. Mon. Not. R. Astron. Soc., 447, 3, 2209-2223 (2015)
https://doi.org/10.1093/mnras/stu2556
Reid B.A., Samushia L., White M. et al. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measurements of the growth of structure and expansion rate at z = 0.57 from anisotropic clustering. Mon. Not. R. Astron. Soc., 426, 4, 2719-2737 (2012).
https://doi.org/10.1111/j.1365-2966.2012.21779.x
dos Reis S.N., Buitrago F., Papaderos P. et al. Structural analysis of massive galaxies using HST deep imaging at z < 0.5. Astron. Astrophys., 634, A11 (2020)
https://doi.org/10.1051/0004-6361/201936276
Willi R., Luis P.C. Building Machine Learning Systems with Python (2013). http://gen.lib.rus.ec/book/index.php?md5=7a375749558682503761fa801a67d7ec
Ruhe Tim. Application of machine learning algorithms in imaging Cherenkov and neutrino astronomy. Intern. J. Modern Phys. A, 35, 33, 2043004 (2020)
https://doi.org/10.1142/S0217751X20430046
Salvato M., Ilbert O. Hoyle Ben, the many flavours of photometric redshifts. Nature Astronomy, 3, 212-222 (2019).
https://doi.org/10.1038/s41550-018-0478-0
Savanevych V.E., Khlamov S.V., Vavilova I.B. et al. A method of immediate detection of objects with a near-zero apparent motion in series of CCD-frames. Astron. & Astrophys., 609, id. A54, 11 pp. (2018)
https://doi.org/10.1051/0004-6361/201630323
Scaife Anna M.M., Porter Fiona. Fanaroff-Riley classification of radio galaxies using group-equivariant convolutional neural networks. Mon. Not. R. Astron. Soc., 503, 2, 2369-2379 (2021).
https://doi.org/10.1093/mnras/stab530
Schawinski Kevin, Zhang Ce, Zhang Hantian, Generative adversarial networks recover features in astrophysical images of galaxies beyond the deconvolution limit. Mon. Not. R. Astron. Soc. Letters, 467, 1, L110-L114, (2017).
https://doi.org/10.1093/mnrasl/slx008
Schlegel D.J., Finkbeiner D.P., Davis M. Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds. Astrophys. J., 500, 2, 525-553 (1998)
https://doi.org/10.1086/305772
Simmons B.D., Lintott C., Willett K.W. et al. Galaxy Zoo: quantitative visual morphological classifications for 48 000 galaxies from CANDELS. Mon. Not. R. Astron. Soc., 464, 4, 4420-4447 (2017)
https://doi.org/10.1093/mnras/stw2587
Speagle J.S., Eisenstein D.J., Deriving photometric redshifts using fuzzy archetypes and self-organizing maps - II. Implementation. Mon. Not. R. Astron. Soc., 469, 1, p. 1205-1224, (2017).
https://doi.org/10.1093/mnras/stx510
Sybilska A., Lisker T., Kuntschner H. et al. The hELENa project - I. Stellar populations of early-type galaxies linked with local environment and galaxy mass. Mon. Not. R. Astron. Soc., 470, 1, 815-838 (2017)
https://doi.org/10.1093/mnras/stx1138
Tsizh M., Novosyadlyj B., Holovatch Yu. Large-scale structures in the Lambda-CDM Universe: network analysis and machine learning. Mon. Not. R. Astron. Soc., 495, 1, 1311-1320 (2020).
https://doi.org/10.1093/mnras/staa1030
Tamburri S., Saracco P., Longhetti M. et al. The population of early-type galaxies: how it evolves with time and how it differs from passive and late-type galaxies. Astron. Astrophys., 570, A102 (2014)
https://doi.org/10.1051/0004-6361/201424040
Vasylenko M. Yu. ,Dobrycheva D.V., Vavilova I.B., Verification of Machine Learning Methods for Binary Morphological Classification of Galaxies from SDSS, Odessa Astron. Publ., 32, 46 (2019).
https://doi.org/10.18524/1810-4215.2019.32.182538
Vasylenko M., Dobrycheva, D., Khramtsov V. Deep Convolutional Neural Networks models for the binary morphological classification of SDSS-galaxies. Communication BAO, 67, 354 (2020).
https://doi.org/10.52526/25792776-2020.67.2-354
Vavilova I.B., Karachentseva V.E.; Makarov D.I., Melnyk O.V. Triplets of Galaxies in the Local Supercluster. I. Kinematic and Virial Parameters. Kinematika i Fizika Nebesnykh Tel, 21, no. 1, p. 3-20 (2005)
Vavilova I.B.; Melnyk O.V.; Elyiv A.A. Morphological properties of isolated galaxies vs. isolation criteria. Astron. Nachr., 330, 1004 (2009)
https://doi.org/10.1002/asna.200911281
Vavilova I.B., Pakuliak L.K., Protsyuk Yu.I. et al. UkrVO Joint digitized archive and scientific projects. Baltic Astronomy, 21, 356-365 (2012)
https://doi.org/10.1515/astro-2017-0394
Vavilova I. B., Elyiv A. A., Vasylenko M. Yu., Behind the Zone of Avoidance of the Milky Way: what can we Restore by Direct and Indirect Methods? Radio Physics, Radio Astronomy, 23, 4, 244-257 (2018).
https://doi.org/10.15407/rpra23.04.244
Vavilova I., Dobrycheva D., Vasylenko M. Multiwavelength Extragalactic Surveys: Examples of Data Mining. In: Knowledge Discovery in Big Data from Astronomy and Earth Observation, 1st Edition. Edited by Petr Skoda and Fathalrahman Adam. Elsevier, p.307-323 (2020).
https://doi.org/10.1016/B978-0-12-819154-5.00028-X
Vavilova I., Pakuliak L., Babyk Iu., Surveys, Catalogues, Databases, and Archives of Astronomical Data. In: Knowledge Discovery in Big Data from Astronomy and Earth Observation, 1st Edition. Edited by Petr Skoda and Fathalrahman Adam. Elsevier, p. 57-102 (2020).
https://doi.org/10.1016/B978-0-12-819154-5.00015-1
Vavilova I. ; Elyiv A.; Dobrycheva D.; Melnyk O. The Voronoi tessellation method in astronomy. In: Intelligent Astrophysics. Edited by I. Zelinka, M. Brescia and D. Baron. Emergence, Complexity and Computation, Vol 39. ISBN: 978-3-030-65867-0. Springer, Cham, 2021, p. 57-79 (2021).
https://doi.org/10.1007/978-3-030-65867-0_3
Vavilova I. B., Dobrycheva D.V., Vasylenko M. Yu., Machine learning technique for morphological classification of galaxies from the SDSS. I. Photometry-based approach, 648, p. A122, (2021).
https://doi.org/10.1051/0004-6361/202038981
Vavilova I. B., Dobrycheva D.V., Vasylenko M. Yu., VizieR Online Data Catalog: SDSS galaxies morphological classification (Vavilova+, J/A+A/648/A122, 2021), (2021).
https://doi.org/10.26093/cds/vizier.36480122
Vega-Ferrero J., Dominguez Sanchez H., Bernardi M. et al. Pushing automated morphological classifications to their limits with the Dark Energy Survey. Mon. Roy. Astron. Soc., 506, 2, 1927-1943 (2021)
https://doi.org/10.1093/mnras/stab594
Villarroel B.; Soodla J.; Comerón S. et al. The Vanishing and Appearing Sources during a Century of Observations Project. I. USNO Objects Missing in Modern Sky Surveys and Follow-up Observations of a "Missing Star". Astron. J., 159, 1, article id. 8, 19 pp. (2020).
https://doi.org/10.3847/1538-3881/ab570f
Vol'Vach A.E.; Vol'Vach L N.; Kut'kin A.M. et al. Multi-frequency studies of the non-stationary radiation of the blazar 3C 454.3. Astronomy Reports, 55, 7, 608-615 (2011).
https://doi.org/10.1134/S1063772911070092
Vulcani B., Poggianti B,M., Aragon-Salamanca A. et al. Galaxy stellar mass functions of different morphological types in clusters, and their evolution between z= 0.8 and 0. Mon. Not. R. Astron. Soc., 412, 1, 246-268 (2011)
https://doi.org/10.1111/j.1365-2966.2010.17904.x
Walmsley M., Smith L., Lintott C. Galaxy Zoo: probabilistic morphology through Bayesian CNNs and active learning. Mon. Not. R. Astron. Soc., 491, 2, 1554-1574, (2020).
https://doi.org/10.1093/mnras/stz2816
Walmsley M., Lintott C., Geron T. et al. Galaxy Zoo DECaLS: Detailed Visual Morphology Measurements from Volunteers and Deep Learning for 314,000 Galaxies. Mon. Not. R. Astron. Soc., 509, 3, 3966-3988 (2021)
https://doi.org/10.1093/mnras/stab2093
Willett K.W., Lintott C.J., Bamford S.P. et al. Galaxy Zoo 2: detailed morphological classifications for 304 122 galaxies from the Sloan Digital Sky Survey. Mon. Not. R. Astron. Soc., 435, 4, 2835-2860, (2013).
https://doi.org/10.1093/mnras/stt1458
Yang Xiaohu, Mo H. J. , van den Bosch Frank C., Constraining galaxy formation and cosmology with the conditional luminosity function of galaxies. Mon. Not. R. Astron. Soc., 339, 4, 1057-1080 (2003).
https://doi.org/10.1046/j.1365-8711.2003.06254.x
Zevin M., Coughlin S., Bahaadini S. et al. Gravity Spy: integrating advanced LIGO detector characterization, machine learning, and citizen science. Classical and Quantum Gravity, 34, 6, id. 064003 (2017).
https://doi.org/10.1088/1361-6382/aa5cea
Zhu Xiao-Pan, Dai Jia-Ming, BianChun-Jiang et al. Galaxy morphology classification with deep convolutional neural networks. Astrophys. & Space Sci., 364, 4, 55 (2019).