Вплив метилювання ДНК на гравічутливість мохів
DOI:
https://doi.org/10.15407/knit2023.04.106Ключові слова:
5–азацитидин, адаптація, галуження, гравітропізм, метилювання ДНК, пероксидаза, протонемаАнотація
Сила тяжіння є важливим фактором росту та розвитку рослин у природному середовищі. Вплив реальної або імітованої мікрогравітації індукує стресову реакцію рослин, яка відбувається унаслідок диференціації клітин та зміни експресії генів при метилюванні ДНК. Досліджено вплив інгібітора метилювання ДНК 5-азацитидину (5-аза) на стадії перцепції та трансдукції гравісигналу у гравітропізм, модифікацію ізоферментних спектрів пероксидази протонеми Physcomitrium patens (Hedw.) Mitt. в умовах зміненої гравітації, фенотип галуження й варіабельність гравітропних кутів латеральних галузок Polytrichum arcticum Sw. ex Brid. Встановлено зв’язок між метилюванням і гравііндукцією та визначено вплив метилювання на стадії сприйняття і реалізації гравісигналу. Деметилювання, зумовлене дією 5-аза, знижує гравічутливість столонів − менше на стадії перцепції і більше під час трансдукції гравісигналу. Аналіз розвитку гравітропізму після застосування інгібітора метилювання свідчить про збереження клітинної пам’яті про сигнал незалежно від стадії гравістимуляції. Однак, тривалість пам’яті коротша на стадії перцепції і довша на стадії трансдукції, що впливає на швидкість відновлення гравітропного росту. Диференційна дія метилювання на гравііндукцію досліджується як епігенетично регульований процес, що модифікує морфологічні відмінності тропізму в умовах мікрогравітації і зміненої сили тяжіння на Землі. Резистентність до впливу гравітації залежить від метаболічних процесів у середовищі клітинної стінки. У біогенезі та механічній стійкості стінки важливу роль відіграє активність пероксидази. Показано, що експресія пероксидази та зміна ізоферментних спектрів ферменту в протонемі P. patens відбулися унаслідок деметилювання ДНК. Епігенетичний поліморфізм пероксидази за умов зміненої гравітації розглядається як вірогідний чинник індивідуальної стійкості рослинного організму. Локальне місце галуження протонеми і просторова орієнтація бокових галузок P. arcticum залежать від гравітаційного вектора, є передумовою фенотипної мінливості та регулюються епігенетично, метилюванням/деметилюванням ДНК.Посилання
Ashapkin V. V., Kutueva L. I., Vanyushin B. F. (2016). Epigenetic variability in plants: heritability, evolutionary significance. Russian Journal of Plant Physiology, 63, № 2, 181-192 [in English]
https://doi.org/10.1134/S1021443716020059
Cannon A. E., Salmi M. L., Clark G. B., et al. (2015). New insights in plant biology gained from research in space. Gravitational and Space Research, 3, № 2, 3-10. 10.2478/gsr-2015-0007
https://doi.org/10.2478/gsr-2015-0007
Correll M. J., Pyle, T. P., Millar, K. D. L., et al. (2013). Transcriptome analyses of Arabidopsis thaliana seedlings grown in space: implications for gravity-responsive genes. Planta, 238, 519-533. doi: 10.1007/s00425-013-1909-x.
https://doi.org/10.1007/s00425-013-1909-x
Cowles J. R., LeMay, R., Jahns G. (1994). Seedling growth and development on space shuttle. Advances in Space Research, 14, № 11, 312. https://doi.org/10.1016/0273-1177(94)90273-9
https://doi.org/10.1016/0273-1177(94)90273-9
De Micco V., De Pascale S., Paradiso R., et al. (2014). Microgravity effects on different stages of higher plant life cycle and completion of the seed-to-seed cycle. Plant Biology, 16, № 1, 31-38. 10.1111/plb.12098. Epub 2013 Sep 9.
https://doi.org/10.1111/plb.12098
Ermakov A. I., Arasimovych V. V., Yarosh N. P et al. Methods of biochemical research of plants. Ed. Ermakov A.I. St.-Petersburg: Agropromizdat, 1987, 430 p. [In Russian].
Francoz E., Ranocha P.,Nguyen-Kim H.,et al. (3014). Roles of cell wall peroxidases in plant development. Phytochemistry, 112, 15-21. doi: 10.1016/j.phytochem. PMID: 25109234
https://doi.org/10.1016/j.phytochem.2014.07.020
Gechev T. S, Hille J. (2005). Hydrogen peroxide as a signal controlling plant programmed cell death. J. Cell Biol., 168, № 1, 17-20. doi: 10.1083/jcb.200409170. PMID: 15631987
https://doi.org/10.1083/jcb.200409170
Guyomarc'h S., Léran S., Auzon-Cape M., et al. (2012). Early development and gravitropic response of lateral roots in Arabidopsis thaliana. Phil. Trans. R. Soc. B. 367, 1509-1516. doi:10.1098/rstb.2011.0231
https://doi.org/10.1098/rstb.2011.0231
Hangarter R.P. (1997). Gravity, light and plant form. Plant Cell and Environment, 20, 796-800.
https://doi.org/10.1046/j.1365-3040.1997.d01-124.x
Hauser F., Waadt R., Schroeder J. I. (2011). Evolution of abscisic acid synthesis and signaling mechanisms. Curr Biol. 21, № 9, 346-355. doi: 10.1016/j.cub.2011.03.015
https://doi.org/10.1016/j.cub.2011.03.015
Herranz R., Medina F. J. (2014). Cell proliferation and plant development under novel altered gravity environments. Plant Biol. (Stuttg). 1, 23-30. doi: 10.1111/plb.12103 PMID: 24112664
https://doi.org/10.1111/plb.12103
Hoson T. (2014). Plant growth and morphogenesis under different gravity conditions: relevance to plant life in space. Life, 4, 205-216. doi:10.3390/life4020205 [PubMed]
https://doi.org/10.3390/life4020205
Hoson T., Wakabayashi K. (2015). Role of the plant cell wall in gravity resistance. Phytochemistry,112, 84-90. doi: 10.1016/j.phytochem.2014.08.022.
https://doi.org/10.1016/j.phytochem.2014.08.022
Hoson T.; Soga K., Mori R., Saiki M., Nakamura Y., Wakabayashi K., Kamisaka S. (2002). Stimulation of elongation growth and cell wall loosening in rice coleoptiles under microgravity conditions in space. Plant Cell Physiol., 43, 1067-1071.
https://doi.org/10.1093/pcp/pcf126
Jablonka E, Lamb M. J. Evolution in Four Dimensions: Genetic, Epigenetic, Behavioral, and Symbolic Variation in the History of Life. A Bradford Book. The MITT Pres. Series. Sterelny K., Wilson R. A. (eds.). Cambridge, Massachusetts; London, England. 2014, 563 p. DOI:10.1186/1475-925X-4-68
https://doi.org/10.1186/1475-925X-4-68
Jin J., Chen H., Cai W. (2018). Transcriptomic Analysis Reveals the Effects of Microgravity on Rice alli on Board the Chinese Spaceship Shenzhou 8. Microgravity Science and Technology, 1-10. Springer Science+Business Media B.V., part of Springer Nature 2018. https://doi.org/10.1007/s12217-018-9633-6
https://doi.org/10.1007/s12217-018-9633-6
Karahara, I., Suto, T., Yamaguchi, T., et al. (2020). Vegetative and Reproductive Growth of Arabidopsis Under Microgravity Conditions in Space. J. Plant Res. 133, 571-585. doi:10.1007/s10265-020-01200-4
https://doi.org/10.1007/s10265-020-01200-4
Khodadad, C. L. M., Hummerick, M. E., Spencer, L. E., et al. (2020). Microbiological and Nutritional Analysis of Lettuce Crops Grown on the International Space Station. Front. Plant Sci. 11, 199. doi:10.3389/fpls.2020.00199
https://doi.org/10.3389/fpls.2020.00199
Khorkavtsiv Y. D., Kordyum E. L., Lobachevska O. V., et al. (2015). Branching of Ceratodon purpureus protonemata effected under altered gravity conditions. Ukr. Bot. J. 72, № 6, 588-595. http://nbuv.gov.ua/UJRN/UBJ_2015_72_6_10 [In Ukraine].
https://doi.org/10.15407/ukrbotj72.06.588
Khorkavtsiv Ya. D., Rypetskyj R. T., Baik O. L. (2009). Phenotypic and epigenetic adaptation of the moss clone to mercury. Cytology and Genetic, № 5, 22-27 [in Ukrainian].
https://doi.org/10.3103/S009545270905003X
Khоrkavtsiv Y., Lobachevska O., Kyyak N. (2021). Involvement of DNA methylation in gravvmorphogenesis of mosses Polytrichum arcticum and Physcomitrella patens. Conference dedicated to the 75th anniversary of the Institute of Plant Physiology and Genetics of the National Academy of Sciences of Ukraine (Kyiv, June 17), 203-205 [In Ukraine].
Kim M., Costello J. (2017). DNA methylation: an epigenetic mark of cellular memory. Experimental & Molecular Medicine. 49, 1-8. doi:10.1038/emm.2017.10
https://doi.org/10.1038/emm.2017.10
Kordyum E. L., Dubyna D. V. (2021). The role of epigenetic regulation in adaptive phenotypic plasticity of plants. Ukr. Bot. J., 78, № 5, 347-359. https://doi.org/10.15407/ukrbotj78.05.347 [In Ukrainian].
https://doi.org/10.15407/ukrbotj78.05.347
Kordyum, E. L. (2014). Plant cell gravisensitivity and adaptation to microgravity. Plant Biology. 16, 79-90. https://doi.org/10.1111/plb.12047
https://doi.org/10.1111/plb.12047
Kovalchuk I., Abramov V., Pogribny I., et al. (2004). Molecular Aspects of Plant Adaptation to Life in the Chernobyl Zone. Plant Physiology, 135, № 1, 357-363. https://www.jstor.org/stable/4281754
https://doi.org/10.1104/pp.104.040477
Kravets A. P., Sokolova D. A., Vengzhen G. S, Grodzinsky D. M. (2013). Corn plant DNA methylation pattern changes at UV- C irradiation fractionating. Cytology and Genetics, 47, 29-33. DOI:10.3103/S0095452713010052
https://doi.org/10.3103/S0095452713010052
Kwon T., Sparks J. A., Nakashima J., et al. (2015). Transcriptional response of Arabidopsis seedlings during spaceflight reveals peroxidase and cell wall remodelinggenes associated with root hair development. Am. J. Bot. 102, № 1, 21-35 https://doi.org/10.3732/ajb.1400458
https://doi.org/10.3732/ajb.1400458
Kyyak N. Y. (2022). Metabolism of carbohydrates and activity of the antioxidant system in mosses on a post-technogenic salinized territory . Regulatory Mechanisms in Biosystems, 13(2), 189-196. https://doi.org/10.15421/022224
https://doi.org/10.15421/022224
Kyyak N., Lobachevska O., Khоrkavtsiv Y. (2021). Morpho-physiological reactions of gravisensitivity and adaptation to UV irradiation of the moss Bryun caespatpcium Hedw. from Antarctica. Space Science and Technology, 27, № 5, 47-59. https://doi.org/10.15407/knit2021.05.047 [in Ukraine].
https://doi.org/10.15407/knit2021.05.047
Kyyak N., Lobachevska O., Khоrkavtsiv Y. (2016). Estimation of the oxidative stress in moss Pohlia nutans (Hedw.) Lindb. depending on the influence of gravity. Space Science and Technology, 22, № 4, 58-66. https://doi.org/10.15407/knit2016.04.058
https://doi.org/10.15407/knit2016.04.058
Lazarenko A.S. Species structure and mechanisms of species formation of mosses. Holubets M.A, Danulkiv I.C. Eds. Proceeding works "Liha-press" Lviv, Ukraine, 2001; 231 p. (in Ukrainian).
Lebedeva M. A., Tvorogova V. E., Tikhodeyev O. N. (2017). Epigenetic mechanisms and their role in plant development. Genetica, 53, № 10, 1115-1131. doi: 10.7868/S0016675817090089
https://doi.org/10.7868/S0016675817090089
Lobachevska O. V., Kyyak N. Y., Khorkavtsiv Y. D., et al. (2022). Gravi-sensitivity of mosses and their gravity-dependent ontogenetic adaptations. Life, 12, № 1782, 2-14. https://doi.org/10.3390/life12111782
https://doi.org/10.3390/life12111782
Lobachevska O., Khorkavtsiv Yа., Kyyak N., et al. (2015). Gravimorphogenesis gametophytes of mosses. Space Science and Technology, 21, № 4, 94-102 [in Ukraine].
https://doi.org/10.15407/knit2015.04.094
Malik G., Dangwal M., Kapoor S., et al. (2012). Role of DNA methylation in growth and differentiation in Physcomitrella patens and characterization of cytosine DNA methyltransferases. FEBS Journal, 279: 4081-4094. doi:10.1111/febs.12002
https://doi.org/10.1111/febs.12002
Medina F. J., Villacampa A., Ciska M., et al. (2021). Understanding Reduced Gravity Effects on Early Plant Development Before Attempting Life-Support Farming in the Moon and Mars. Front. Astron. Space Sci. 8, 1-8. https://doi.org/10.3389/fspas.2021.729154
https://doi.org/10.3389/fspas.2021.729154
Mullen J. L., Hangarter R. P. (2003). Genetic analysis of the gravitropic set-point angle in lateral roots of Arabidopsis. Adv Space Res, 31, № 10, 249-257. doi: 10.1016/s0273-1177(03)00249-7. PMID: 14686437
https://doi.org/10.1016/S0273-1177(03)00249-7
Nedycha O. M. Plant cell wall and environment. Kyiv, Altepress, 2015, 288 p. [іn Ukraine].
Passardi F., Cosio C. (2005). Peroxidases have more functions than a Swiss army knife. Plant Cell Reports, 24, № 5, 255-265. DOI:10.1007/s00299-005-0972-6
https://doi.org/10.1007/s00299-005-0972-6
Ripetskyj, R.T.; Khorkavtsiv, Ya.D. (2012). Epigenetic adaptation in mosses and the phenomenon of cell memory. Ukr. Botan. Journ., 69, № 2, 302-314. [In Ukrainian].
Rothe G. (1972). Unterschiede im Enzymmuster von Prototnemata, Moospflänzchen, Sporogon und Kallus der Laubmooskreuzung Funaria hygrometrica x Physcomitrella piriforme. Beitrage zur Biologie der Pflanzen, 48: 433-444.
Roychoudhry S., Bianco M. D., Kieffer M., et al. (2013). Auxin controls gravitropic setpoint angle in higher plant lateral branches. Curr Biol. 23, №15, 1497-504 doi10.1016/j.cub.2013.06.034: PMID: 23891109
https://doi.org/10.1016/j.cub.2013.06.034
Roychoudhry S., Kieffer M., De Bianco M., et al. (2017). The developmental and environmental regulation of gravitropic setpoint angle in Arabidopsis and bean. Scientific reports, 3, 1-12. DOI: 10.1016/s0273-1177(03)00249-7 PMID: 14686437
https://doi.org/10.1016/S0273-1177(03)00249-7
Sato E.M., Hijazi H., Bennett M.J., et al. (2015). New insights into root gravitropic signalling. J. Exp. Bot. 66, 2155-2165. doi: 10.1093/jxb/eru515 PMC4986716
https://doi.org/10.1093/jxb/eru515
Swarup R., Bennett M. J. (2018). Root gravitropism. Annu. Plant. Rev. Online, 157-174. DOI:10.1002/9781119312994.apr0401
https://doi.org/10.1002/9781119312994.apr0401
Tishchenko O.M., Mykhalska S.I., Morgun B.V. (2016). Genetic engineering and cell selection for enhancing of crops osmotolerance. Fiziol. rast. genet. 48, № 3: 257-266. doi: https://doi.org/10.15407/frg2016.03.257 [In Ukrainian].
https://doi.org/10.15407/frg2016.03.257
Valério L., De Meyer M., Penel C., et al. (2004). Expression analysis of the Arabidopsis peroxidase multigenic family. Phytochemistry, 65, 1331-1342. DOI: 10.5897/AJB10.2291
https://doi.org/10.5897/AJB10.2291
Vandenbrink J. P.; Kiss, J. Z.; Herranz, R., et al. (2014). Light and gravity signals synergize in modulating plant development. Frontier in Plant Science. 5, 1-18. DOI:10.3389/fpls.2014.00563
https://doi.org/10.3389/fpls.2014.00563
Villacampa A., Sora L., Herranz R., Medina F.J. et al. (2021). Analysis of graviresponse and biological effects of vertical and horizontal clinorotation in Arabidopsis thaliana root tip. Plants, 10, № 4, 1-20. DOI:10.3390/plants10040734