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ANALYTICAL MODEL OF SATELLITE MOTION IN ALMOST CIRCULAR ORBITS 
UNDER THE INFLUENCE OF ZONAL HARMONICS OF GEOPOTENTIAL

The article deals with the movement of satellites in low near-circular orbits of the Earth. An analytical model is constructed, which 

consists of formulas describing the change of the osculating elements and averaged equations. An algorithm for constructing a second 

approximation of the influence of zonal harmonics of the geopotential on the movement of satellites in almost circular orbits is pre-

sented. For the second and third zonal harmonics, formulas are given for the osculating and average elements describing the motion 

of the satellite in the second approximation in small parameters. The introduction of special variables for almost circular orbits made 

it possible to significantly simplify the procedure for constructing the second approximation of the influence of zonal harmonics. The 

article provides a justification for the accuracy of the analytical model for the considered orbits. The constructed model of changes in 

the average elements of the orbit describes the basic principles of motion. With a sufficiently high accuracy, this model describes the 

changes in the average elements of the orbit with simple analytical formulas and is convenient for analyzing the properties of orbits and 

pre-selecting a reference orbit for a specific mission. 

Keywords: analytical model, almost circular orbits, zonal harmonics, average elements, laws of motion.

Цитування: Pirozhenko A. V., Maslova A. I., Vasyliev V. V. Analytical model of satellite motion in almost circular orbits under 

the influence of zonal harmonics of geopotential. Space Science and Technology. 2022. 28, № 4 (137). P. 18—30. https://doi.

org/10.15407/knit2022.04.018

Динаміка та керування космічними апаратами 
Spacecraft Dynamics and Control

INTRODUCTION 

The article deals with the movement of satellites in 

low and very low, almost circular orbits of the Earth. 

The focus is on orbits with altitudes from 400 to 800 

km, although the results obtained can be extended to 

other low orbits. An almost circular orbit is under-

stood as an orbit for which the changes in radius dur-

ing one revolution of orbital motion do not exceed 

tenths of a percent. It is assumed that the inclination 

of the orbits is not small. Such a choice of orbits is 

determined by the interest in commercial, fairly light 

Earth remote sensing (ERS) satellites.

The choice of a reference orbit — an idealized tra-

jectory in the vicinity of which the satellite will move 

is a necessary and important task of effective satellite 

mission planning. The requirements for the reference 
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orbit are, of course, contradictory: it should also give 

high accuracy in predicting movement and be simple 

enough to allow for its effective selection. It is clear 

that the rational choice of the reference orbit should 

be based on knowledge of the basic principles of the 

perturbed motion of the satellite.

Methods of numerical integration of equations of 

motion, the use of which is very effective in many 

problems of dynamics, are ineffective in the task of 

determining the basic principles of motion. There-

fore, from the very beginning of space exploration, 

analytical theories of the motion of satellites in near-

Earth orbits have been created [2, 11]. Work on the 

development of analytical theories of satellite motion 

has never stopped (see, for example, [1, 3—6, 8, 17]).

The Simplified General Perturbation (SGP) mod-

el series occupies a special position among the ana-

lytical models of satellite motion. These models were 

developed by U.S. Air Force for the purpose of op-

erational monitoring of changes in near-Earth space. 

The SGP models use average orbital elements, whose 

values are obtained using a special procedure for re-

moving short-period variations [10]. SGP models 

have been developed over decades [17] and are now 

widely used [7, 15].

The difference between the gravitational field of 

the Earth and the Newtonian central field has the 

main disturbing effect on the movement of the satel-

lite in low Earth orbits. The main difference between 

the Earth’s gravitational field and the Newtonian 

one is described by low-order zonal harmonics. At 

the same time, the effect on the satellite of distur-

bances from these harmonics does not depend on the 

rotation of the Earth. Thus, the study of the influence 

of zonal harmonics on satellite motion makes it pos-

sible to make significant progress in determining the 

basic principles of satellite motion, whilst appearing 

to be one of the simplest tasks in the study of the in-

fluence of external disturbances on satellite motion.

To date, many effective studies have been devoted 

to the influence of zonal harmonics of the geopoten-

tial on the motion of the satellite (see, for example, 

[1—6, 8, 11, 17]). Therefore, the question arises: why 

do we need another study? The answer to this ques-

tion consists of several parts. Firstly, another study 

will not significantly change the total number of such 

studies. And the use of new variables [13, 14] describ-

ing the motion of the satellite will allow us to see the 

regularities of motion from a slightly different angle, 

which can expand our knowledge. Secondly, con-

sidering a rather narrow class of orbits together with 

the special variables introduced for this class made it 

possible, it seems, to significantly simplify the proce-

dure for constructing a second approximation of the 

influence of zonal harmonics. Thirdly, the analytical 

models proposed in the article describe the motion of 

the satellite depending on the argument of the lati-

tude of the orbit. This, in contrast to models using 

the mean anomaly or a combination of it, in some 

cases, seems more convenient. Fourthly, in the avail-

able publications on the issue under consideration, 

it is difficult to analyze the relationship between the 

so-called mean elements, briefly describing the basic 

principles of motion and the osculating elements of 

the orbit. For example, in the monograph [17], a lot 

of attention is paid to this problem. But among the 

extensive and very practical general tips for solving 

this problem, the following phrases are particularly 

memorable: “Everything has to be consistent!” and 

“Unfortunately, you won’t always find this level of 

detail.” In [16], in the same connection, it is noted 

that “…the older analytical theories often do not de-

liver the required accuracy, and the implementation 

of the newer theories requires access to the internal 

documentation of other space agencies or journal pa-

pers of limited access...” From this, we can conclude 

that the solution to the problem of the connection 

between the mean elements and the osculating ele-

ments of the orbit requires additional development.

Thus, the construction of an analytical model of 

the influence of zonal harmonics on the movement 

of satellites in low Earth orbits is an important task 

for designing the orbits of remote sensing satellites, 

and its solution requires additional research. The ar-

ticle proposes an algorithm for constructing an ana-

lytical model and formulas for osculating and mean 

elements describing the motion of the satellite in the 

second approximation in small parameters under the 

influence of zonal harmonics of the geopotential.

PROBLEM STATEMENT

The potential of the Earth’s gravitational field can 

be described using a series expansion in spherical 

functions
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where   is gravitational constant of the Earth; R  is 

the distance from the center of the Earth to the con-

sidered point in space with geocentric latitude   and 

longitude   in the coordinate system associated with 

the Earth; ER  is the average equatorial radius of the 

Earth; 0nC , nmC , nmS  are dimensionless coefficients 

depending on the distribution of the Earth’s mass-

es; (sin )nP   are Legendre polynomials of order n ; 

(sin )nmP   are associated Legendre functions of order 

n  and index m .

The members of expression (1) containing (sin )nP   

are called the second, third, etc. zonal harmonics, 

and the terms containing (sin )nmP   are sectorial (at 

n m ) and tesseral (at 0 m n  ) harmonics. The 

geometrical meaning harmonics is detailed in [17].

It is known that the main changes in the motion 

parameters of satellites in low orbits are caused by the 

influence of zonal harmonics. Moreover, harmonics 

of a lower order have a more significant influence, 

the magnitude of which is determined by the coef-

ficients 0nC : 
3

20 1.0826 10C    , 
6

30 2.5324 10C   , 
6

40 1.6199 10C   , 
7

50 2.2775 10C    [17].

To describe the motion, we will use a special form 

of equations for close to circular orbits [13, 14]. This 

form of equations describes the deviation of the sat-

ellite trajectory from the circular unperturbed orbit. 

For this, dimensionless variables 1 2, ,b b   are in-

troduced, associated with the current position and 

speed of the satellite by the relations

0 1(1 )R R b  , 2 0
R b R  , 0(1 )p R   ,

where 0R  is the radius of an undisturbed circular 

comparison orbit, p  is the focal parameter of the 

satellite orbit.

The satellite motion equations can be written as
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sinn n

ui z uF z F
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    ,
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where the prime denotes the derivative with respect 

to u , u  is the argument of the latitude of the unper-

turbed orbit, 

3
0

u
R


 ; 

, ,i u  are the inclination, the longitude of the as-

cending node, and the argument of the latitude of 

the satellite’s orbit, respectively; 11z b   is the di-

mensionless radius of the orbit equal to the ratio of 

the radius of the orbit to the comparison orbit radius, 

1s     is the dimensionless focal parameter of the 

orbit equal to the ratio of the focal parameter of the 

orbit to the focal parameter of the comparison orbit;

 u u u    ; 

2
* 0
r r

RF F


, 

2
* 1/20
, ,n n

RF s F
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
, , ,r nF F F

are radial, transversal, and normal accelerations re-

spectively; 

2
0R


 

is the acceleration of free fall for 0R .

The accelerations from the second zonal harmon-

ic are three orders of magnitude higher than the rest 

of the disturbing accelerations. To describe its influ-

ence, we introduce a small parameter 
2

20 2
0

3
2

ERC
R

    

(for 0R = 7000 km, 
31.35 10   ). We will consid-

er motion in orbits close to circular in the sense that 

the initial values of the parameters 1 2, ,b b   are small 

quantities, the order of which is equal to or greater 

than the order of smallness of the quantity  .

The task is to construct an analytical model with 

reasonable (required for the orbits under consid-

eration) accuracy describing the change in satellite 

motion under the influence of zonal harmonics of 

geopotential.

DETERMINATION 
OF THE REQUIREMENTS FOR THE ACCURACY 
OF THE ANALYTICAL MODEL

The qualitative requirement for the analytical model 

in its description consists of the basic principles of 

satellite motion: the model should describe secular 

and long-period movements. The model should also 

allow analyzing the properties of orbits, in particular, 

their stability. It is desirable that the model includes 
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fairly simple ratios that allow the choice of the satel-

lite’s reference orbit.

The constructed first approximation of the influence 

of the second zonal harmonic [14] shows that it does 

not allow one to judge the stability of the shape of the 

orbits. At the same time, it is known that the analysis of 

the influence of the second and third zonal harmonics 

makes it possible to determine stable, so-called frozen 

orbits. The analysis of the influence of higher-order 

zonal harmonics is incorrect without constructing a 

second approximation of the influence of the second 

zonal harmonic. Thus, the study of the regularities of 

the influence of zonal harmonics and the analysis of 

the stability of the orbital shapes requires the construc-

tion of a second approximation of the influence of the 

second zonal harmonic of the geopotential.

Consider the quantitative requirements for the ac-

curacy of the analytical model. The first approxima-

tion of the solution of the equations of satellite mo-

tion with respect to a small parameter   has an error 

of the order of 
610 u

, where u  is the argument of 

latitude. We will assume that the accuracy is deter-

mined by values an order of magnitude lower, i.e., in 

the case under consideration, the accuracy is about 
510 u

. Consequently, the expected accuracy of the 

first approximation in the interval of two orbital loops 

will be of the order of 10–4, and in the interval of 20 

orbits — of the order of 10–3. Taking into account 

that the radius of the considered orbits is less than 

7000 km, we find that the expected accuracy of the 

first approximation is about 700 m for two orbits and 

7 km for 20 orbits. This accuracy does not seem to be 

sufficient.

To determine the sufficient accuracy of analytical 

approximations of the influence of zonal harmonics 

on the satellite’s motion, let us consider estimates of 

the influence of various perturbations on the satellite’s 

motion in the considered orbits (Figure 1, Table 1).

The second approximation from the second zonal 

harmonic has an error of the order of 
3 910u u  . 

Table 1. Analysis of the influence of various disturbing factors on the satellite motion [12]

Component of accelerations

Order of magnitude of disturbances (m/s2)

Orbits of altitude of 19000...20000 km 

(GLONASS, GPS)

Low orbits of altitude 350...400 km 

(ISS)

Central field of the Earth 0.61 8.8

Effect of Earth flattening (harmonic 2  0) 10–4 2.5  10–2

Effect of harmonics of an order higher than 2  0 2  10–7 10–5

Effect of harmonics of an order higher than 8  8 10–10 4  10–7

Effect of harmonics of an order higher than 36  36 0 10–7

Effect of harmonics of an order higher than 72  72 0 10–8

Earth’s atmosphere 0 10–6

Lunar gravity 4  10–6 10–6

Displacement of Earth’s pole from Z-axis of the 

Geocentric Coordinate System (GCS)

10–6 3  10–7

Solar gravity 10–6 2.5  10–7

Forces of light pressure from the Sun 10–7 (GPS) 6  10–8 (ISS)

Precession and nutation of Earth’s axis of rotation 2.5  10–8 6  10–8

Gravitational disturbances caused by the change 

of the Earth’s shape due to tidal effects on the Earth 

of the Moon and the Sun

2  10–9 1.5  10–7

Nonuniformity of Earth rotation 3  10–9 7  10–9

Change of Earth’s shape due to pole displacement 10–11 2  10–9

Forces of light pressure from the Earth 1.5  10–9 (GPS) 4  10–9 (ISS)

Forces caused by light and heat radiation of SC 1.4  10–9 10–9

Gravitational disturbances from Venus 1.1  10–10 3  10–11
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Taking into account that the coefficients of the re-

maining zonal harmonics are at least three orders of 

magnitude smaller than the coefficient of the second 

zonal harmonic (i.e., they have the order of the square 

of the coefficient of the second zonal harmonic and 

higher), the first approximation of their influence 

will have an error of a higher order of smallness than 

the second approximation from the second zonal 

harmonic. Consequently, the accuracy of the analyti-

cal model, including the second approximation from 

the second zonal harmonic and the first approxima-

tions from the remaining zonal harmonics, will be of 

the order of 
810 u

.

The influence of the rest of the disturbing factors 

on the satellite’s motion in the considered orbits can 

be estimated by the formula 

0

W u
g

, 

where W  is the acceleration of the satellite due to 

this effect, and 

0 2
0

g
R


  

is the acceleration of gravity for a given altitude. 

From the third column of Table 1, it is easy to see 

that the effects of aerodynamics and lunar gravity 

are an order of magnitude superior to the accuracy 

of the second approximation of the influence of the 

second zonal harmonic, and many other factors have 

an effect comparable to the accuracy of the second 

approximation.

The accuracy achieved when constructing the sec-

ond approximation of the effect of the second zonal 

harmonic on the satellite’s motion 
810 u

 with an or-

bit radius of less than 7000 km ensures the accuracy 

of estimating the satellite’s position on two turns of 

approximately 0.7 m and 7 m on twenty turns. Cal-

culations of the motions of satellites and their com-

parison with measurements of these motions show 

that such  accuracy of the analytical assessment of 

the influence of zonal harmonics is quite sufficient 

(the effect of tidal effects has comparable changes in 

the motions of satellites in low orbits).

Thus, the construction of the second approxima-

tion of the influence of the second zonal harmonic 

and the first approximations of the influence of the 

higher-order zonal harmonics provides sufficient ac-

curacy for assessing these influences. Constructing 

approximations of a higher order has no practical 

meaning because of the effects of other disturbing 

forces.

CONSTRUCTION OF THE SECOND 
APPROXIMATION OF THE INFLUENCE 
OF THE SECOND ZONAL HARMONIC

The disturbing accelerations from the action of the 

second zonal harmonic have the form

Figure 1. Comparison of various disturbing accelerations in low Earth orbits [9]
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Passing in (2) to differentiation with respect to u, 
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, 

but the prime denotes the derivative with respect to u.

Substituting accelerations (3) into (4) we obtain

3 1/2 sin2 sin2
2

wi u i
z s
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2
3 1/22 cos sinw i u
z s
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, (5)

1/2
2
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z
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1 2b wb  ,

2 21
2 3 4 (3sin sin 1)b wb w i u

z z
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where
11/2

2 2
2 1/2 3

12 cos sinsw i u
z s z


 

   
 

.

Since we are considering an almost circular orbit 

and 1 2, ,b b   are small quantities, then, taking into 

account that with the preservation of only terms 

of the first order of smallness 11 0.5 2w b    
2 22 cos sini u  , in the first approximation the equa-

tions with differentiation with respect to u coincide 

with the equations for differentiation with respect to 

u .

We will assume that at the initial moment of time 

0u u  , i.e. the trajectory “starts” at the ascending 

node of the orbit. Then the solutions of equations (5) 

for , ,i    in the first approximation with respect to 

small parameters have the form [14] 

0 2 0 0sin2 (cos2 1),
4

i i i i i u
     

 0 2 0 0cos 2 sin2 ,
2

i u u
     

 
2

0 2 0 0sin (cos2 1),i u           (6)

where the subscript “0” denotes the initial values 

of the variables, and the subscript “2” denotes the 

terms describing, in the first approximation, changes 

in motion under the influence of the second zonal 

harmonic.

We write the equation for the change of 1b  in the 

form [14] 

 

2 2
1 1 0 0 0

1sin cos2 sin 1 .
2 2

b b i u i          
 

  (7)

Taking 

 
2

0 0
11 sin
2

i     
 

, (8)

we obtain that equation (7) describes harmonic oscil-

lations relative to the zero position. Condition (8) is 

not a restriction on the values of the focal parameter 

(transverse satellite velocity) due to the absence of re-

strictions on the radius of the comparison orbit 0R .

Then the equation describing the change in 1b  

takes the form

2
1 1 0sin cos2 .

2
b b i u  

We write its solution in the form

1 0 0cos sin (cos2 cos )
3
db b u b u u u    

0 0cos( ) (cos2 cos )
3
dA u u u    ,
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where 

2
0sin

2
d i
 ; 

0 0,A   are the amplitude and phase shift of natural os-

cillations, / 3d  is the amplitude of forced oscillations.

Let us construct a solution to equations (5) in 

the second approximation in small parameters. 

To do this, we introduce new variables: l sqi i i  , 

l sq     , l sq   , where the indices “l” and 

“sq” denote the components of the solution of equa-

tions (5), proportional to the first and second degrees 

of smallness, respectively.

To describe the changes in 1 2,b b , we introduce 

new variables ,A   as follows

1 cos( ) (cos2 cos )
3
db A u u u    ,

2 sin( ) (sin 2sin2 ).
3
db A u u u    

Then the changes in ,A  , are described by the 

equations

[2cos2 sin( ) 2sin( ) sin ]
3
dA u u u        

1 2cos( ) sin( )r rb u b u    ,

[2cos2 cos( ) 2cos( ) cos ]
3
dA A u u u        

1 2sin( ) cos( )r rb u b u    ,

where 1 2,r rb b are the right-hand sides of the corre-

sponding equations (5).

Since the second approximation is being sought, it 

is sufficient to express w  in the first approximation. 

Substituting solutions (6) and (8) for   into the ex-

pression for w , we obtain
.

11 2 0.5 (3 3.5sin )w b i     
2(1 1.5sin )cos2i u  .

We substitute the introduced variables into equa-

tions (5) and transform them, discarding the terms of 

the equations of the third and higher order of small-

ness. After rather cumbersome, but not complicated 

transformations, it is possible to obtain expressions 

for the terms 22x , where  , , , ,x i A    , de-

scribing the change in the parameters of the orbit 

under the action of the second zonal harmonic of 

the geopotential in the second approximation. These 

expressions are given in Appendix.

We note that to construct approximations for A  

and  , it is more convenient to use the equations in 

the following form

1 2cos( ) sin( )r rA b u b u     

2 1cos( ) sin( ) cos2 sin( )b u b u d u u      , (9)

1 2sin( ) cos( )r rA b u b u     

2 1sin( ) cos( ) cos2 cos( )b u b u d u u      . (10)

Note also that the cumbersomeness of the formu-

las, especially for A  and  , makes it desirable to 

verify them. To carry out such a check, differential 

equations were written out in the most general form, 

with only linear and quadratic terms preserved on 

their right-hand side. The verification of the approxi-

mation formulas was carried out by comparing these 

formulas with the results of the numerical integration 

of the obtained differential equations.

CONSTRUCTION OF THE FIRST APPROXIMATION 
OF THE INFLUENCE OF THE THIRD ZONAL HARMONIC

Since the zonal harmonics coefficients 0nC  at 2n   

have an order of smallness equal to the square of the 

second zonal harmonic coefficient and higher, then, 

for the considered model accuracy, it is sufficient to 

take into account their influence only in the first ap-

proximation. Taking into account the algorithm for 

constructing a second approximation of the influ-

ence of the second zonal harmonic, it is not difficult 

to understand that the influence of higher-order zon-

al harmonics will be described by additional terms 

that can be obtained independently of the influence 

of other zonal harmonics. Then, taking into account 

the influence of n  zonal harmonics, the orbital pa-

rameters will be described as follows

 0 2 22 3 ... nx x x x x x       , (11)

where  , , , ,x i A     is the orbital parameter; 0x  

is its initial value; 2x  are the terms describing the 

influence of the second zonal harmonic in the first 

approximation; 22x  are the terms describing the in-

fluence of the second zonal harmonic in the second 

approximation; 3x  are the terms describing the in-

fluence of the third zonal harmonic in the first ap-

proximation, etc.

Taking into account the limited volume of the 

article, and the uniformity of the procedures, we 

present formulas only for the third zonal harmonic.
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The disturbing accelerations of the third zonal 

harmonic have the form
3

2 230
52 (5sin sin 3)sin sinE

r
C RF u i u i
R


   ,

3
2 230

5 (15sin sin 3)cos sin
2

EC RF u i u i
R


  ,

3
2 230

5 (15sin sin 3)cos
2

E
n

C RF u i i
R


  .

Substituting these accelerations into equations 

(4) and linearizing the equations, it is easy to obtain 

formulas for additional terms describing the influence 

of the third zonal harmonic

2 2
3 3 0 0

1 cos sin (5sin sin 3)
2

i i u i u    ,

3 3 0
11 ctg
2

i   

2 3
0

2 15sin cos cos cos 1
3 3

i u u u        
  

,

2 2
3 3 0 0sin sin (5sin sin 3)i u i u    ,

2
3 3 0 0 0

3 5sin sin 1 sin
4 8

A i i
         

 
2

0 0
3 11 sin 1 sin(2 )
4 4

i u     
 

2
0 0 0

5 1sin sin(2 ) sin(4 )
16 2

i u u
       

,

2
3 3 0 0 0

3 5sin sin 1 sin
4 8

A i i
         

 
2

0 0
1 11 1 sin 1 cos
2 4

i u      
 

2
0 0

3 11 sin 1 sin(2 )
4 4

i u     
 

2
0 0 0

5 1sin sin(2 ) sin(4 )
16 2

i u u
       

,

23
3 0 0 0

0

3 5sin cos 1 sin
4 8

i i
A

        
 

2
0 0

1 11 1 sin 1 sin
2 4

i u      
 

2
0 0

3 11 sin 1 cos(2 )
4 4

i u     
 

2
0 0 0

5 1sin cos(2 ) cos(4 ) .
16 2

i u u
       

Here, as before, we assume that at the initial moment 

of time 0u  , 
3

30
3 3

0

EC R
R

   

formulas for A  and   are obtained using equations 

(9), (10).

Note that the obtained expressions show that the 

effect of the third zonal harmonic leads to a systemic 

change only in the shape of the orbit (  and A ). 

The rest of the parameters are subject to only peri-

odic fluctuations.

NUMERICAL ESTIMATES 
OF THE MODEL’S ACCURACY

Numerical integration of the equations of orbital 

motion confirms the above estimates of the accu-

racy of the analytical formulas. Figure 2 shows the 

difference num anx x x   , where  , , , ,x i A    ; 

numx  is the value of the parameter obtained by nu-

merical integration of the equations of orbital mo-

tion; anx  is the value of the parameter obtained using 

the constructed analytical approximations in accor-

dance with formula (11). The calculations were car-

ried out taking into account the effect of the second 

and third zonal harmonics for the following initial 

conditions: 

0 507 kmsrR R  , 6371 kmsrR  , 0 97.4i  
, 

0 183.3  
, 

4
10 4.8 10b    , 20 0.00126b    

( 0 0.00135A  , 0 249.12  
), 0 0u  . 

AVERAGED EQUATIONS

We obtain the averaged equations by applying the av-

eraging operator 
2

0

1 ( )
2

f u du


   

to the right-hand sides of differential equations (4), 

taking into account (9), (10), in which terms not 

higher than the second order of smallness are pre-

served.

The equations averaged over u , taking into ac-

count the second and third harmonics, have the form
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It is clear that the right-hand sides of equations 

(12) fully correspond to the linear terms of the 

previously constructed approximations.

Note that the use of averaged equations is correct 

when G  has order   and C  has order 
2 . The case 

when G  and C  have higher orders of smallness 
2  

and 
3 , respectively, requires additional research. 

Further, orbits for which 
2

0sin 0.8i   are not con-

sidered.

To use the averaged equations in constructing a 

long-term forecast of satellite movements, it is nec-

essary to determine the initial conditions for the 

averaged equations. Unfortunately, the averaging 

method does not allow this to be done. Calculations 

show that accepting the initial conditions equal to 

the initial conditions of the initial equations leads to 

significant errors. The combination of the averaging 

method with the constructed analytical approxima-

tions makes it easy to solve this problem. In accor-

dance with the logic of the averaging method, we re-

quire that high-frequency oscillations be carried out 

relative to the average solution with zero mean. Then 

the initial conditions for the averaged equations are 

determined by the free terms of the expansions. For 

example, the initial value for i  is 

0 0 0sin2
4

i i i
  

0 0 0
1 1 1sin2 29 84 cos
48 3 3

i d A
       

  
.

The solutions of the averaged equations construct-

ed with such initial conditions show good agreement 

with the solutions of the original equations. So, the 

difference between   and   for the same initial 

conditions as in the construction of Figures 2 does 

not exceed 
42.5 10  deg. per 1000 satellite orbital 

turns. Under the same initial conditions, but 0 45i  
, 

this difference does not exceed 
32 10  deg. for 1000 

turns. Note that the deviations between   and mean 

  grow linearly with time. This growth is apparently 

associated with unaccounted for accelerations from 

the second zonal harmonic (see Figure 2, b). The lin-

ear nature of the deviations of   from the mean   

allows them to be reduced, if this  is required by the 

task.

Figure 3 shows the changes in the amplitudes 

,A A  and phase shifts (apogee arguments) ,   of 

Figure 2. Difference in inclination (a), in longitude of the 

ascending node (b), in the description of the relative focal 

parameter   (c), in the description of the amplitude of the 

change in the relative radius of the orbit (d), in the descrip-

tion of the phase of oscillations of the orbital radius (apogee 

argument) (e)

0, 0i    ,

1 2cos cos 2 8
2 3

i i d       
 

,

 
sin cos

3
dA C AG G      ,  (12)

cos sin
3
dA C G    ,

where the “hat” denotes the average values;

5 2G d   ; 

2
3

1 11 sin 1 sin 1
2 4

C i i    
 

. 
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the initial (2) and averaged equations for 1000 satel-

lite orbits. The initial conditions of motion are the 

same as for Figures 2. The solutions of the complete 

equations are shown in the figure by the solid line; 

the solutions of the averaged equations are shown 

by the circles. The difference between   and   for 

1000 turns is less than 0.2°, between A  and A  less 

than 
62.5 10 .

Equations (12) are easy to integrate. Let us con-

struct a solution for A  and  . We introduce new 

variables cos , sin .A h A      The change in 

these variables is described by the equations

cos sinA A       

sin ,AG C Gh C   

sin cosh A A      

cos .
3 3
d dG AG G G     

Or compactly

Gh C   ,

 3
dh G G    .  (13)

The solution of equations (13) for 0G   and 

0G   can be written in the form

0 0sin cos sin
3
dA A Gu       

 

0 0sin cosC CA Gu
G G

     
 

,

 
0 0cos cos cos

3 3
d dA A Gu       

 
 (14)

 
0 0sin sinCA Gu

G
    
 

,

where 0 0,A   are the initial conditions of the aver-

aged equations.

It follows from (14) that motion has a unique equi-

librium position, which is determined by the equali-

ties

0 0sin CA
G

   , 0 0cos
3
dA   .

And this equilibrium position is stable.

Thus, the averaged equations describe the basic 

principles of satellite motion by simple ratios. Hav-

ing a sufficiently high accuracy, these equations allow 

analyzing the properties of the orbits and making a 

preliminary choice of the parameters of the reference 

orbit for the satellite mission.

The combination of solutions of the averaged 

equations and formulas of the second approximation 

makes it possible to construct relations for the long-

term prediction of satellite motions. For this, in the 

obtained formulas of the second approximation, it is 

necessary to replace the free and linear terms with the 

corresponding solutions of the averaged equations, 

and replace the initial values in the formulas of the 

second approximation with “initial” values that cor-

respond to the current values of the average elements.

СONCLUSIONS

1. The constructed analytical model of the second 

approximation in small parameters describes with 

sufficient accuracy short-period changes in the mo-

tion of satellites in low, almost circular orbits under 

the influence of the second and third zonal harmon-

ics of the geopotential.

2. The proposed algorithm for constructing the 

second approximation of the influence of the zonal 

harmonics of the geopotential on the motion of sat-

ellites in almost circular orbits, despite the cumber-

some formulas, is mathematically simple. It consists 

of schemes for constructing the second approxima-

tion of the influence of the second zonal harmonic 

Figure 3. Solutions of the initial (2) and averaged equations for 

the amplitude and phase shift in the oscillations of the orbit 

radius
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and the first approximations of the influence of high-

er order zonal harmonics. The algorithm allows one 

to easily take into account the influence of any num-

ber of zonal harmonics.

3. The constructed model of changes in the aver-

age elements of the orbit describes the basic princi-

ples of motion. Having a sufficiently high accuracy, 

the model describes the changes in the average ele-

ments with simple analytical formulas. The proposed 

model is convenient for analyzing the properties of 

orbits and the preliminary selection of a reference or-

bit for a specific mission.

APPENDIX

22 0 0 0
1 1 1sin2 29 84 cos
48 3 3

i i d A          
 

0 0
1 1cos( ) cos
4 12
A u d u   

112 cos2
16

d u   
 

+

0 0
1 1cos3 cos(3 )

36 12
d u A u   

1 1 14 cos4 ( 4 )cos6
16 3 48

d u d u      
  

,

22 0 0 0
1 1 2cos 1 sin 2 8
3 2 3

i A d u          
 

0 0 0 0
1 1sin sin( ) sin( )
6 2
d u A u A u     

2 1 15 1 sin2 sin3
3 2 18
d u d u      

 

0
1 1 2sin(3 ) sin4
6 8 3
A u d u      

  
,

2 2
22 0 0

2 13 22 cos 3 6 cos
3 18 3
A d d d d u      

2
0 0

22 cos( ) 4 (2 )cos2 cos3
9

A d u d d u d u      

0 0
2 1cos(3 ) 2 cos4
3 6
A d u d d u     

 
,

2 2
22 0 0 0

3 7 74 9 cos
4 36 12

A A d A d d         
 

2
0 0 0 0

1 1 12 cos2 cos3
4 3 4
A d A       
 

0 0
2 2sin 1 cos
3 3

d d u A d u       
 

2 2
0 0

3 1 12 5 cos( )
4 6 18
A d d u      

 

2
0 0 0

1 2 16 2 cos( ) 1 cos( 2 )
36 3 6

d d u A d u         
 

  2
0 0 0

1 13 cos(2 2 ) cos(2 )
4 18
A d u d u      

0
1 23 cos(2 )

12 3
d d u      
 

0
1 35 10 cos(3 )
9 4
d d u     
 

0
1 1 41 cos(3 )
2 2 9
d d u     
 

2
0 0 0 0

1 1cos(3 2 ) cos(3 3 )
6 4
A d u A u      

2
0 0 0

1 1cos(4 ) cos(4 2 )
9 3
d u A d u     

0
1 2 11 cos(5 )
6 3 2
d d u     
 

,

22 0 0
0

1 7 79 4 sin
4 12 36

dA d
A

          
  

0 0 0
1 1 12 sin2 sin3
4 3 4

d A       
 

0
0

12 5 cos (5 2 )
3
dd d u
A

 
       
 

0
0

21 cos sin
3 3
d d u

A
 

    
 

0 0 0
0

1 1 1 13 cos 5 2 sin( )
4 3 6 6

dA d d u
A

           
  

0 0
0

1 3 18 17 sin( ) sin( 2 )
3 4 2
d d u d u
A

        
 
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0
0

1 5 17 11 cos sin2
2 6 18 6

dd d u
A

            
  

2

0 02
0 0

1 1(5 )sin(2 ) sin(2 )
12 6

d dd u u
A A

      

0
1 ( 3 )sin(2 2 )
4

d u    

0
0

7 51 sin(3 )
36 9

d d u
A

       
 

0
0

13 1 sin(3 )
18 4

d d u
A

      
 

0 0 0
1 1sin(3 2 ) sin(3 3 )
6 4
d u A u      

2

0 0
0

1 1sin(4 ) sin(4 2 )
9 3
d u d u
A

     

0
0

5 1 sin(5 ).
18 12

d d u
A

     
 
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АНАЛІТИЧНА МОДЕЛЬ РУХУ СУПУТНИКА НА МАЙЖЕ КОЛОВИХ ОРБІТАХ 

ПІД ВПЛИВОМ ЗОНАЛЬНИХ ГАРМОНІК ГЕОПОТЕНЦІАЛУ

Розглядається рух супутників на низьких майже колових орбітах Землі. Побудовано аналітичну модель, яка склада-

ється з формул, що описують зміну оскулюючих елементів орбіти, та осереднених рівнянь. Наведено алгоритм по-

будови другого наближення впливу зональних гармонік геопотенціалу на рух супутників по майже колових орбітах. 

Для другої та третьої зональних гармонік наведено формули для оскулюючих та середніх елементів, що описують рух 

супутника у другому наближенні за малими параметрами. Введення спеціальних змінних для майже колових орбіт 

дозволило значно спростити процедуру побудови другого наближення впливу зональних гармонік. Дано обґрунту-

вання точності аналітичної моделі для аналізованих орбіт. Побудована модель зміни середніх елементів орбіти описує 

основні закономірності руху. Маючи досить високу точність, ця модель описує зміни середніх елементів орбіти про-

стими аналітичними формулами і зручна для аналізу властивостей орбіт та попереднього вибору опорної орбіти для 

конкретної місії.

Ключові слова: аналітична модель, майже колові орбіти, зональні гармоніки, середні елементи, закономірності руху.




