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ANALYTICAL MODEL OF SATELLITE MOTION IN ALMOST CIRCULAR ORBITS
UNDER THE INFLUENCE OF ZONAL HARMONICS OF GEOPOTENTIAL

The article deals with the movement of satellites in low near-circular orbits of the Earth. An analytical model is constructed, which
consists of formulas describing the change of the osculating elements and averaged equations. An algorithm for constructing a second
approximation of the influence of zonal harmonics of the geopotential on the movement of satellites in almost circular orbits is pre-
sented. For the second and third zonal harmonics, formulas are given for the osculating and average elements describing the motion
of the satellite in the second approximation in small parameters. The introduction of special variables for almost circular orbits made
it possible to significantly simplify the procedure for constructing the second approximation of the influence of zonal harmonics. The
article provides a justification for the accuracy of the analytical model for the considered orbits. The constructed model of changes in
the average elements of the orbit describes the basic principles of motion. With a sufficiently high accuracy, this model describes the
changes in the average elements of the orbit with simple analytical formulas and is convenient for analyzing the properties of orbits and
pre-selecting a reference orbit for a specific mission.

Keywords: analytical model, almost circular orbits, zonal harmonics, average elements, laws of motion.

INTRODUCTION

The article deals with the movement of satellites in
low and very low, almost circular orbits of the Earth.
The focus is on orbits with altitudes from 400 to 800
km, although the results obtained can be extended to
other low orbits. An almost circular orbit is under-
stood as an orbit for which the changes in radius dur-
ing one revolution of orbital motion do not exceed

tenths of a percent. It is assumed that the inclination
of the orbits is not small. Such a choice of orbits is
determined by the interest in commercial, fairly light
Earth remote sensing (ERS) satellites.

The choice of a reference orbit — an idealized tra-
jectory in the vicinity of which the satellite will move
is a necessary and important task of effective satellite
mission planning. The requirements for the reference
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orbit are, of course, contradictory: it should also give
high accuracy in predicting movement and be simple
enough to allow for its effective selection. It is clear
that the rational choice of the reference orbit should
be based on knowledge of the basic principles of the
perturbed motion of the satellite.

Methods of numerical integration of equations of
motion, the use of which is very effective in many
problems of dynamics, are ineffective in the task of
determining the basic principles of motion. There-
fore, from the very beginning of space exploration,
analytical theories of the motion of satellites in near-
Earth orbits have been created [2, 11]. Work on the
development of analytical theories of satellite motion
has never stopped (see, for example, [1, 3—6, 8, 17]).

The Simplified General Perturbation (SGP) mod-
el series occupies a special position among the ana-
Iytical models of satellite motion. These models were
developed by U.S. Air Force for the purpose of op-
erational monitoring of changes in near-Earth space.
The SGP models use average orbital elements, whose
values are obtained using a special procedure for re-
moving short-period variations [10]. SGP models
have been developed over decades [17] and are now
widely used [7, 15].

The difference between the gravitational field of
the Earth and the Newtonian central field has the
main disturbing effect on the movement of the satel-
lite in low Earth orbits. The main difference between
the Earth’s gravitational field and the Newtonian
one is described by low-order zonal harmonics. At
the same time, the effect on the satellite of distur-
bances from these harmonics does not depend on the
rotation of the Earth. Thus, the study of the influence
of zonal harmonics on satellite motion makes it pos-
sible to make significant progress in determining the
basic principles of satellite motion, whilst appearing
to be one of the simplest tasks in the study of the in-
fluence of external disturbances on satellite motion.

To date, many effective studies have been devoted
to the influence of zonal harmonics of the geopoten-
tial on the motion of the satellite (see, for example,
[1—6, 8, 11, 17]). Therefore, the question arises: why
do we need another study? The answer to this ques-
tion consists of several parts. Firstly, another study
will not significantly change the total number of such
studies. And the use of new variables [13, 14] describ-

ing the motion of the satellite will allow us to see the
regularities of motion from a slightly different angle,
which can expand our knowledge. Secondly, con-
sidering a rather narrow class of orbits together with
the special variables introduced for this class made it
possible, it seems, to significantly simplify the proce-
dure for constructing a second approximation of the
influence of zonal harmonics. Thirdly, the analytical
models proposed in the article describe the motion of
the satellite depending on the argument of the lati-
tude of the orbit. This, in contrast to models using
the mean anomaly or a combination of it, in some
cases, seems more convenient. Fourthly, in the avail-
able publications on the issue under consideration,
it is difficult to analyze the relationship between the
so-called mean elements, briefly describing the basic
principles of motion and the osculating elements of
the orbit. For example, in the monograph [17], a lot
of attention is paid to this problem. But among the
extensive and very practical general tips for solving
this problem, the following phrases are particularly
memorable: “Everything has to be consistent!” and
“Unfortunately, you won’t always find this level of
detail.” In [16], in the same connection, it is noted
that “...the older analytical theories often do not de-
liver the required accuracy, and the implementation
of the newer theories requires access to the internal
documentation of other space agencies or journal pa-
pers of limited access...” From this, we can conclude
that the solution to the problem of the connection
between the mean elements and the osculating ele-
ments of the orbit requires additional development.
Thus, the construction of an analytical model of
the influence of zonal harmonics on the movement
of satellites in low Earth orbits is an important task
for designing the orbits of remote sensing satellites,
and its solution requires additional research. The ar-
ticle proposes an algorithm for constructing an ana-
lytical model and formulas for osculating and mean
elements describing the motion of the satellite in the
second approximation in small parameters under the
influence of zonal harmonics of the geopotential.

PROBLEM STATEMENT

The potential of the Earth’s gravitational field can
be described using a series expansion in spherical
functions
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where p is gravitational constant of the Earth; R is
the distance from the center of the Earth to the con-
sidered point in space with geocentric latitude 6 and
longitude A inthe coordinate system associated with
the Earth; R, is the average equatorial radius of the
Earth; C , C, , S,, are dimensionless coefficients
depending on the distribution of the Earth’s mass-
es; P (sind) are Legendre polynomials of order 7
P (sind) are associated Legendre functions of order
n and index m .

The members of expression (1) containing P, (sind)
are called the second, third, etc. zonal harmonics,
and the terms containing P, (sind) are sectorial (at
n=m) and tesseral (at 0 <m <n) harmonics. The
geometrical meaning harmonics is detailed in [17].

It is known that the main changes in the motion
parameters of satellites in low orbits are caused by the
influence of zonal harmonics. Moreover, harmonics
of a lower order have a more significant influence,
the magnitude of which is determined by the coef-
ficients C,,: C,, ~—1.0826-10", C,, ~2.5324-10°,
C, ~1.6199:10°, C, ~2.2775-107 [17].

To describe the motion, we will use a special form
of equations for close to circular orbits [13, 14]. This
form of equations describes the deviation of the sat-
ellite trajectory from the circular unperturbed orbit.
For this, dimensionless variables b,,b,,y are in-
troduced, associated with the current position and
speed of the satellite by the relations

R=R/(1+b), R=b, Ju/R , p=R(1+7y),
where R is the radius of an undisturbed circular
comparison orbit, p is the focal parameter of the
satellite orbit.

The satellite motion equations can be written as

i'=zcosuF, Q'=z>2CF"
sini
SI/Z
Au’z[—z—lj—ﬂ'cos i, bj=b,, (2)

z
-b, . .

bz'z—y —+FE, y'=2zF
z

20

where the prime denotes the derivative with respect
to 1, u is the argument of the latitude of the unper-

turbed orbit,
< [
u= |—;
\/ R]

i, Q, u are the inclination, the longitude of the as-
cending node, and the argument of the latitude of
the satellite’s orbit, respectively; z=1+b, is the di-
mensionless radius of the orbit equal to the ratio of
the radius of the orbit to the comparison orbit radius,
s=1+7 is the dimensionless focal parameter of the
orbit equal to the ratio of the focal parameter of the
orbit to the focal parameter of the comparison orbit;

. . R . R
Au=u—ii; F =—F ,F =—s"F , F,F,F,
V)

are radial, transversal, and normal accelerations re-

spectively; "

R
0
is the acceleration of free fall for R, .

The accelerations from the second zonal harmon-
ic are three orders of magnitude higher than the rest
of the disturbing accelerations. To describe its influ-
ence, we introduce a small parameter

_ 3. K
_E 20R_§
(for R,= 7000 km, &€= 1.35-107° ). We will consid-
er motion in orbits close to circular in the sense that
the initial values of the parameters b, b,,y are small
quantities, the order of which is equal to or greater
than the order of smallness of the quantity € .

The task is to construct an analytical model with
reasonable (required for the orbits under consid-
eration) accuracy describing the change in satellite
motion under the influence of zonal harmonics of
geopotential.

DETERMINATION
OF THE REQUIREMENTS FOR THE ACCURACY
OF THE ANALYTICAL MODEL

The qualitative requirement for the analytical model
in its description consists of the basic principles of
satellite motion: the model should describe secular
and long-period movements. The model should also
allow analyzing the properties of orbits, in particular,
their stability. It is desirable that the model includes
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fairly simple ratios that allow the choice of the satel-
lite’s reference orbit.

The constructed first approximation of the influence
of the second zonal harmonic [14] shows that it does
not allow one to judge the stability of the shape of the
orbits. At the same time, it is known that the analysis of
the influence of the second and third zonal harmonics
makes it possible to determine stable, so-called frozen
orbits. The analysis of the influence of higher-order
zonal harmonics is incorrect without constructing a
second approximation of the influence of the second
zonal harmonic. Thus, the study of the regularities of
the influence of zonal harmonics and the analysis of
the stability of the orbital shapes requires the construc-
tion of a second approximation of the influence of the
second zonal harmonic of the geopotential.

Consider the quantitative requirements for the ac-
curacy of the analytical model. The first approxima-
tion of the solution of the equations of satellite mo-
tion with respect to a small parameter € has an error

of the order of 10°u, where u is the argument of
latitude. We will assume that the accuracy is deter-
mined by values an order of magnitude lower, i.c., in
the case under consideration, the accuracy is about
10”°u . Consequently, the expected accuracy of the
first approximation in the interval of two orbital loops
will be of the order of 10~4, and in the interval of 20
orbits — of the order of 10~3. Taking into account
that the radius of the considered orbits is less than
7000 km, we find that the expected accuracy of the
first approximation is about 700 m for two orbits and
7 km for 20 orbits. This accuracy does not seem to be
sufficient.

To determine the sufficient accuracy of analytical
approximations of the influence of zonal harmonics
on the satellite’s motion, let us consider estimates of
the influence of various perturbations on the satellite’s
motion in the considered orbits (Figure 1, Table 1).

The second approximation from the second zonal
harmonic has an error of the order of €u~10"u.

Table 1. Analysis of the influence of various disturbing factors on the satellite motion [12]

Order of magnitude of disturbances (m/s2)
Component of accelerations Orbits of altitude of 19000...20000 km | Low orbits of altitude 350...400 km

(GLONASS, GPS) (ISS)
Central field of the Earth 0.61 8.8
Effect of Earth flattening (harmonic 2 x 0) 10~ 2.5%x 1072
Effect of harmonics of an order higher than 2 x 0 2x 1077 103
Effect of harmonics of an order higher than 8 x 8 10-10 4x1077
Effect of harmonics of an order higher than 36 x 36 0 107
Effect of harmonics of an order higher than 72 x 72 0 10-8
Earth’s atmosphere 0 10-¢
Lunar gravity 4x10° 10-6
Displacement of Earth’s pole from Z-axis of the 10-6 3x 107
Geocentric Coordinate System (GCS)
Solar gravity 106 2.5x 1077
Forces of light pressure from the Sun 10-7 (GPS) 6 x 1078 (ISS)
Precession and nutation of Earth’s axis of rotation 2.5% 1078 6x 108
Gravitational disturbances caused by the change 2x 1079 1.5x 1077
of the Earth’s shape due to tidal effects on the Earth
of the Moon and the Sun
Nonuniformity of Earth rotation 3x 107 7 %1079
Change of Earth’s shape due to pole displacement 10-11 2x 1079
Forces of light pressure from the Earth 1.5x 102 (GPS) 4 x 1079 (ISS)
Forces caused by light and heat radiation of SC 1.4x 107 10-°
Gravitational disturbances from Venus 1.1 x 1010 3x 10~
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Figure 1. Comparison of various disturbing accelerations in low Earth orbits [9]

Taking into account that the coefficients of the re-
maining zonal harmonics are at least three orders of
magnitude smaller than the coefficient of the second
zonal harmonic (i.e., they have the order of the square
of the coefficient of the second zonal harmonic and
higher), the first approximation of their influence
will have an error of a higher order of smallness than
the second approximation from the second zonal
harmonic. Consequently, the accuracy of the analyti-
cal model, including the second approximation from
the second zonal harmonic and the first approxima-
tions from the remaining zonal harmonics, will be of
the order of 104 .

The influence of the rest of the disturbing factors
on the satellite’s motion in the considered orbits can
be estimated by the formula

w
—u,

&
where W is the acceleration of the satellite due to

this effect, and

is the acceleration of gravity for a given altitude.
From the third column of Table 1, it is easy to see
that the effects of aerodynamics and lunar gravity
are an order of magnitude superior to the accuracy
of the second approximation of the influence of the
second zonal harmonic, and many other factors have

22

an effect comparable to the accuracy of the second
approximation.

The accuracy achieved when constructing the sec-
ond approximation of the effect of the second zonal
harmonic on the satellite’s motion 10~*u with an or-
bit radius of less than 7000 km ensures the accuracy
of estimating the satellite’s position on two turns of
approximately 0.7 m and 7 m on twenty turns. Cal-
culations of the motions of satellites and their com-
parison with measurements of these motions show
that such accuracy of the analytical assessment of
the influence of zonal harmonics is quite sufficient
(the effect of tidal effects has comparable changes in
the motions of satellites in low orbits).

Thus, the construction of the second approxima-
tion of the influence of the second zonal harmonic
and the first approximations of the influence of the
higher-order zonal harmonics provides sufficient ac-
curacy for assessing these influences. Constructing
approximations of a higher order has no practical
meaning because of the effects of other disturbing
forces.

CONSTRUCTION OF THE SECOND
APPROXIMATION OF THE INFLUENCE
OF THE SECOND ZONAL HARMONIC

The disturbing accelerations from the action of the
second zonal harmonic have the form
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3C, uR?
) —%(%inzusinzi—l) ,
3C,uR>
E :%sinhtsinz i, (3)
3C
F = 20“ E —2 Eginusin2i.

n

Passing in (2) to differentiation with respect to u,
we obtain
sinu

i'=zwcosuF,, Q'= —F
sini
1/2

Au'= W[S—Z—IJ—Q'COS i, bj=wb,, 4)

z
b = Y—9 * r_ *
, =W +wE Y =2wzsE,
z
where, as in (2)
. R . R2
Ft,n :_05’1/21:;,” > Fr F
n)
S -1
w= [7 —zctgisinuF, j ,

but the prime denotes the derivative with respect to u.
Substituting accelerations (3) into (4) we obtain

.

i =—————=sin2usin2i,

w
2
2 Z3S1/

Q' =-2e——cosisin’u ,
2351/2

1/2
s )
Au'= w(—z—lj—ﬂ’cos i,
z

1/2
e 2.
y'=—2ew—-sin”isin2u,
z

)

r_
b/ =wb,,
- w 2. .
v o=wl — +8—4(3smzzsm2u—1),
z
where
12 -1
S 2. .2
w=| —F+2e—— —;zcos isinu | .
z sz

Since we are considering an almost circular orbit
and b,,b,,y are small quantities, then, taking into

account that with the preservation of only terms
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of the first order of smallness w=1-0.5y+2b —
—2¢gcos’isin’u , in the first approximation the equa-
tions with differentiation with respect to u coincide
with the equations for differentiation with respect to
u.

We will assume that at the initial moment of time
u=u=0,i.e. the trajectory “starts” at the ascending
node of the orbit. Then the solutions of equations (5)
for i,Q, v in the first approximation with respect to
small parameters have the form [14]

&
i=i,+Ai, =i +Zsin2i0(c032u—1),

Q=Q +AQ,=Q, —%cosi0 (2u —sin2u),

y=7, +Ay, =y0+gsm2i0(c082u—1), (6)

where the subscript “0” denotes the initial values
of the variables, and the subscript “2” denotes the
terms describing, in the first approximation, changes
in motion under the influence of the second zonal
harmonic.

We write the equation for the change of b, in the
form [14]

1
b/+b, = —Esm i cos2u+y0+s(zsm i —lj (7)

1
Y, = 8(1 —Esin2 iOJ ,

we obtain that equation (7) describes harmonic oscil-
lations relative to the zero position. Condition (8) is
not a restriction on the values of the focal parameter
(transverse satellite velocity) due to the absence of re-
strictions on the radius of the comparison orbit R, .

Then the equation describing the change in b,
takes the form

Taking
)

b/+b, =

sm i, cos2u.
2
We write its solution in the form
d
b, =b,cosu+b, sinu+§(c032u—cosu) =
d
=A,cos(u—ay,) +§(c032u —cosu),
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where
€ . 5.
d = =sin’ iy
2

A,, a, are the amplitude and phase shift of natural os-
cillations, d/3 is the amplitude of forced oscillations.

Let us construct a solution to equations (5) in
the second approximation in small parameters.
To do this, we introduce new variables: i=i +i_,
Y=Y+, Q=Q,+Q_, where the indices “/” and
“sq” denote the components of the solution of equa-
tions (5), proportional to the first and second degrees
of smallness, respectively.

To describe the changes in b,b,, we introduce
new variables A, o as follows

d
b, =Acos(u—a) +§(c052u —cosu),

b_

. d,. .
, =—Asin(u—o)+ ;(smu —2sin2u).

Then the changes in A, a, are described by the
equations

d
A= —E[ZCOSZMSin(u —a)—2sin(u+a)+sina]+
+b,, cos(u—a)—b, sin(u—a),
Ad'=A +§[2c052ucos(u —a)+2cos(u+a)—cosa]+

+b,, sin(u—o)+b,, cos(u—a),
where b, ,b, are the right-hand sides of the corre-
sponding equations (5).

Since the second approximation is being sought, it
is sufficient to express w in the first approximation.
Substituting solutions (6) and (8) for y into the ex-
pression for w, we obtain

w=1+2b, —0.5¢(3—3.5sin i) +
+&(1—1.5sin’i)cos2u .

We substitute the introduced variables into equa-
tions (5) and transform them, discarding the terms of
the equations of the third and higher order of small-
ness. After rather cumbersome, but not complicated
transformations, it is possible to obtain expressions
for the terms Ax,,, where x:{i, Q,v, A, oc}, de-
scribing the change in the parameters of the orbit
under the action of the second zonal harmonic of
the geopotential in the second approximation. These
expressions are given in Appendix.

24

We note that to construct approximations for A
and o, it is more convenient to use the equations in
the following form

A'=b, cos(u—a)-b, sin(u—a)-

—b, cos(u—a)—b, sin(u—oa)—dcos2usin(u—a), (9)
Aa'=b, sin(u—o)+b,, cos(u—oa)—
—b, sin(u—a)+b, cos(u—a) +dcos2ucos(u—a). (10)

Note also that the cumbersomeness of the formu-
las, especially for A and o, makes it desirable to
verify them. To carry out such a check, differential
equations were written out in the most general form,
with only linear and quadratic terms preserved on
their right-hand side. The verification of the approxi-
mation formulas was carried out by comparing these
formulas with the results of the numerical integration
of the obtained differential equations.

CONSTRUCTION OF THE FIRST APPROXIMATION
OF THE INFLUENCE OF THE THIRD ZONAL HARMONIC

Since the zonal harmonics coefficients C  at n>2
have an order of smallness equal to the square of the
second zonal harmonic coefficient and higher, then,
for the considered model accuracy, it is sufficient to
take into account their influence only in the first ap-
proximation. Taking into account the algorithm for
constructing a second approximation of the influ-
ence of the second zonal harmonic, it is not difficult
to understand that the influence of higher-order zon-
al harmonics will be described by additional terms
that can be obtained independently of the influence
of other zonal harmonics. Then, taking into account
the influence of n zonal harmonics, the orbital pa-
rameters will be described as follows
X =x,+Ax, +Ax,, + Ax, +..+ Ax , (11)

where x = {i, Q, v, A, oc} is the orbital parameter; x,
is its initial value; Ax, are the terms describing the
influence of the second zonal harmonic in the first
approximation; Ax,, are the terms describing the in-
fluence of the second zonal harmonic in the second
approximation; Ax, are the terms describing the in-
fluence of the third zonal harmonic in the first ap-
proximation, etc.

Taking into account the limited volume of the
article, and the uniformity of the procedures, we
present formulas only for the third zonal harmonic.
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The disturbing accelerations of the third zonal
harmonic have the form

C

R3 .2 . 2. . .
F %(SSIH usin®i—3)sinusini,

r

=2

C

R3
F = %(1551112 usin®i—3)cosusini,

T

C,,uR’
LSE(ISSin2 usin®i—3)cosi .

n

Substituting these accelerations into equations
(4) and linearizing the equations, it is easy to obtain
formulas for additional terms describing the influence
of the third zonal harmonic

1
Ai, = & cosi, sinu(5sin*i, sin’ u—3),
1 )
AQ, = IESSCtglo x
2. (2 1
x| 5sin” i, E—cosu+§cos u|+cosu—11,
Ay, = g,sini; sinu(5sin’ i sin’ u—3) ,
3 5
AA, =g sini { —sino, | 1-=sin’i, |+
4 8
3(.1
—Z[lzsinz i —lein(Zu—oco)—
5 .o .
—Esm i sm(2u+oco)—531n(4u—oco) ,
3 5
AA, =g, sini,{ —sina, | 1-=sin’i, |+
4 8
1(,1
+15(1Zsin2 i —1jcosoc0 U—
3(.1
—Z[lzsinz i —I)Sin(2u—a0)—

5 1
—Esin2 i {sin(2u +a,)——sin(4u—a, )} ,

1(.1
—1=| 1=sin? i,—1|sino, -u+
2\ 4

3(.1 . ,.
+Z(lzsm2 i —ljcos(2u—oc0)—
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5 .5, 1
—Esm2 i {cos(Zu +a,)+ Ecos(4u —-a, )}

Here, as before, we assume that at the initial moment
oftime u=0,

3
— C3ORE

e, =
3
RO

3

formulas for A and o are obtained using equations
9), (10).

Note that the obtained expressions show that the
effect of the third zonal harmonic leads to a systemic
change only in the shape of the orbit (o and A).
The rest of the parameters are subject to only peri-
odic fluctuations.

NUMERICAL ESTIMATES
OF THE MODEL’S ACCURACY

Numerical integration of the equations of orbital
motion confirms the above estimates of the accu-
racy of the analytical formulas. Figure 2 shows the
difference Ax=x,,, —x,, , Wwhere x = {i, Q,7, A, oc} ;
X, 1s the value of the parameter obtained by nu-
merical integration of the equations of orbital mo-
tion; x_, is the value of the parameter obtained using
the constructed analytical approximations in accor-
dance with formula (11). The calculations were car-
ried out taking into account the effect of the second
and third zonal harmonics for the following initial
conditions:

R,=R,+507km, R, =6371km, iy =97.4",
Q,=183.3", b, =—4.8-10", b,, =—0.00126

(A, =~0.00135, o, ~249.12°), u, =0.

AVERAGED EQUATIONS

We obtain the averaged equations by applying the av-
eraging operator

1 2n
— u)du
- !f( )
to the right-hand sides of differential equations (4),
taking into account (9), (10), in which terms not
higher than the second order of smallness are pre-
served.

The equations averaged over u, taking into ac-
count the second and third harmonics, have the form
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Figure 2. Difference in inclination (a), in longitude of the
ascending node (b), in the description of the relative focal
parameter Y (c), in the description of the amplitude of the
change in the relative radius of the orbit (d), in the descrip-
tion of the phase of oscillations of the orbital radius (apogee
argument) (e)

:0, 7':
~/ - - 1 2
Q'=—gcosi +£cosi (ZES—SEdJ ,

A&'z—Csin&—/_\GJrchos&, (12)

A= Ccos&+gGsin& ,

where the “hat” denotes the average values;
=5d—2¢;

1 1. ,—
C=1-g,sini|1=sin’i —1|.
2 4
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It is clear that the right-hand sides of equations
(12) fully correspond to the linear terms of the
previously constructed approximations.

Note that the use of averaged equations is correct
when G has order ¢ and C has order £°. The case
when G and C have higher orders of smallness &’
and €, respectively, requires additional research.
Further, orbits for which sin’i, ~0.8 are not con-
sidered.

To use the averaged equations in constructing a
long-term forecast of satellite movements, it is nec-
essary to determine the initial conditions for the
averaged equations. Unfortunately, the averaging
method does not allow this to be done. Calculations
show that accepting the initial conditions equal to
the initial conditions of the initial equations leads to
significant errors. The combination of the averaging
method with the constructed analytical approxima-
tions makes it easy to solve this problem. In accor-
dance with the logic of the averaging method, we re-
quire that high-frequency oscillations be carried out
relative to the average solution with zero mean. Then
the initial conditions for the averaged equations are
determined by the free terms of the expansions. For
example, the initial value for i is

- . e . .
iy =i, ——sin2i, +
4

1 1 1
+€sin2i, {5(298 - 84501) +§A0 cos ao} .

The solutions of the averaged equations construct-
ed with such initial conditions show good agreement
with the solutions of the original equations. So, the
difference between Q and Q for the same initial
conditions as in the construction of Figures 2 does
not exceed 2.5-10™* deg. per 1000 satellite orbital
turns. Under the same initial conditions, but i, = 45°,
this difference does not exceed 2-10~ deg. for 1000
turns. Note that the deviations between Q and mean
Q grow linearly with time. This growth is apparently
associated with unaccounted for accelerations from
the second zonal harmonic (see Figure 2, b). The lin-
ear nature of the deviations of Q from the mean Q
allows them to be reduced, if this is required by the
task.

Figure 3 shows the changes in the amplitudes
A, A and phase shifts (apogee arguments) o, o of
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the initial (2) and averaged equations for 1000 satel-
lite orbits. The initial conditions of motion are the
same as for Figures 2. The solutions of the complete
equations are shown in the figure by the solid line;
the solutions of the averaged equations are shown
by the circles. The difference between o and a for
1000 turns is less than 0.2°, between A and A less
than 2.5-10°.

Equations (12) are easy to integrate. Let us con-
struct a solution for A and o . We introduce new
variables A =Acosd, h=Asina. The change in
these variables is described by the equations

A= A'cost— Ad'sino =
= AGsina+C =Gh+C,
K = A'sin0+ AQ cosa =

=§G—ZGam&=§G—Gk

Or compactly
A'=Gh+C,
h’z%G—Gk. (13)
The solution of equations (13) for G>0 and

G <0 can be written in the form

_ - _d
Asina = —(AO cosQL, —gjsinGu +

+| A, sind, +E cosGu—E ,
G G

Acos&ziJ{;&Ocos&O—ijcosGqu (14)
3 3

+(ZO sinal, +%JsinGu ,

where A,, @, are the initial conditions of the aver-
aged equations.

It follows from (14) that motion has a unique equi-
librium position, which is determined by the equali-
ties

And this equilibrium position is stable.

Thus, the averaged equations describe the basic
principles of satellite motion by simple ratios. Hav-
ing a sufficiently high accuracy, these equations allow
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analyzing the properties of the orbits and making a
preliminary choice of the parameters of the reference
orbit for the satellite mission.

The combination of solutions of the averaged
equations and formulas of the second approximation
makes it possible to construct relations for the long-
term prediction of satellite motions. For this, in the
obtained formulas of the second approximation, it is
necessary to replace the free and linear terms with the
corresponding solutions of the averaged equations,
and replace the initial values in the formulas of the
second approximation with “initial” values that cor-
respond to the current values of the average elements.

CONCLUSIONS

1. The constructed analytical model of the second
approximation in small parameters describes with
sufficient accuracy short-period changes in the mo-
tion of satellites in low, almost circular orbits under
the influence of the second and third zonal harmon-
ics of the geopotential.

2. The proposed algorithm for constructing the
second approximation of the influence of the zonal
harmonics of the geopotential on the motion of sat-
ellites in almost circular orbits, despite the cumber-
some formulas, is mathematically simple. It consists
of schemes for constructing the second approxima-
tion of the influence of the second zonal harmonic
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and the first approximations of the influence of high-
er order zonal harmonics. The algorithm allows one
to easily take into account the influence of any num-
ber of zonal harmonics.

3. The constructed model of changes in the aver-
age elements of the orbit describes the basic princi-
ples of motion. Having a sufficiently high accuracy,
the model describes the changes in the average ele-
ments with simple analytical formulas. The proposed
model is convenient for analyzing the properties of
orbits and the preliminary selection of a reference or-
bit for a specific mission.

APPENDIX

1 1 1
Ai,, = €sin2i,| —| 296 -84 —d |+—A, cosa, —
48 3 3
1 1 11
——A,cos(u+a,)+—dcosu+ | 2d ——¢ |cos2u +
4 12 16
1 1
+—dcos3u——A,cos(Bu—a,)+
36 12

1
J’__
16

1 1
£—4—d |cos4u+—(g—4d)cos6u |,
3 48
AQ. =gcosi llA sina., + 218—82(1 u-—
22 0 3 0 0 2 3
1. . i 1 .
—gdsmu+Aosm(u—ao)—5A0sm(u—oco)+
+ 5£d—118 sin2u+idsin3u—
3 2 18
1 1 2
——Asin(3u—a,)+| —e——d |sindu |,
6 8 3
2 1 2
Ay,, =2=Adcosa, +3ds—6—3d2 +=d’ cosu—
3 18 3
2
—2A,dcos(u+ o) +4d(2d —g)cos2u +§d2 cos3u—
2 1
—gAOdcos(3u—oc0)+d S—ng cosdu ,
7
AA, =—-Ad—- EAS —4ld8+9—d2 coso, —
4 36 12
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1 1 1
_ZAO (8 - 2§d]c0520c0 —ZAS cos3a,, +

2 2
+dsina, [lgd—gsju-l—Aodcoqur

{

1 2 1
+| 6—d* —22de |cos(u+a)+1=A dcos(u—2a, )+
( 36 3 j (utoy) 6 ° ( )

3

1 1
ZA;-2—de+5—d’ |cos(u—o,)+
4 6 18

1 1
+ZA° (8—3d)cos(2u—2a0) —gdz cosQu—o,)+
1 2
+—d| 3—d—¢ |[cosQu+a,)+
12 3

+ld(58 - loidjcos@u -, )+
9 4

1

+ld(
2 \2

—e— lgdjcos(.%u +a,)—

1 1

—ngdcos(?)u -2a,) +ZA§ cos(3u—3a,)—
1., 1

—gd cos(4u—oa,)+ ngdcos(4u —2a,)+

d

1 2 1
+—d| 1-d——¢ |cos(5u—a,) ,
6 3 2
9ld—4—s
A 3

7 .
SanLO-i-
( 12 6 ﬂ

1 1 1
+Z(8 + ng)sinZOL0 +ZA0 sin3o, +

1
A(XZZ = |:ZAO +

0
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3A

0
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d

2
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3A

3 0
1 1 d 1 1
+| —A,+3=dcosa, +—| 5—d—2—¢ | [sin(u—a,)+
4 3 AL 6 6
1 1
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3 A, 4 2

ISSN 1561-8889. Kocmiuna nayka i mexnonoeis. 2022. T. 28. No 4



Analytical model of satellite motion in almost circular orbits under the influence of zonal harmonics of geopotential

1 5 d 17 1 d (13 1 .
+| ——e+1=d+—-cosa,| ——d+—¢ | [sin2u+ +—(—d——8jsm(3u+oc0)—

27 6 A, 18 6 A\18 4
+ii(5d—s)sin(2u—a )+ld—zsin(2u+a )+ —ldsin(3u—2a )+lA sin(3u—3a,)—
12 A, U 6A; ‘ 6 g ‘

+ X 6= 3d)sin(u—20. )+ L o)+ dsin(du—20. )+
—(e—3d)sin(Qu— —_— - = -
4" %o 9A, 73 "
d 7 5 . d(5 1 .
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AHAJIITUYHA MOJEJIb PYXY CYITYTHUKA HA MAMXE KOJIOBUX OPBITAX
1A BINIMBOM 30HAJIbHUX TAPMOHIK TEOITOTEHUIATY

Posrnsimaetbest pyx CynmyTHUKIB Ha HU3bKUX Maiixke KojloBUX opoitax 3emi. [ToOynoBaHO aHATITUUHY MOIEb, SIKa CKana-
€TbCS 3 (POPMYII, 1110 OMKUCYIOTh 3MiHY OCKYJIIOIOUMX €JIEMEHTIB OpOiTH, Ta OCepeaHeHUX piBHsSAHb. HaBeneHO ajiroputM mo-
OyIOBU JPYroro HaOJIMXKEHHS BILIMBY 30HAbHUX TAPMOHIK I€ONMOTEHLialy Ha PyX CYMYTHUKIB MO Malixke KOJOBUX OpOiTax.
J71s1 ApyToi Ta TpeThoi 30HATBHUX TAPMOHIK HaBeIeHO (DOPMYNIU TSI OCKYJTIOIOUNX Ta CEPEIHIX eIEMEHTIB, 1110 OTTUCYIOTh PyX
CYIIyTHUKA Y IPYroMy HaOJMKEHHI 3a MaJlUMU TapaMmeTpamMu. BBeneHHs crielialbHUX 3MiHHUX IJIs Maiixke KOJJOBUX OpOiT
JIO3BOJIMJIO 3HAYHO CIPOCTUTHU MPOLEAYPY NOOYI0BU APYroro HabJMXKEeHHS BIUIMBY 30HaJIbHUX rapMoHiK. JlaHO oOrpyHTY-
BaHHsI TOUHOCTI aHAIITUMHOI MOJIEJIi JUTS aHatizoBaHUX opOiT. [ToOynoBaHa Moe/Ib 3MiHU CepeIHiX eJIEMEHTIB OpOITH OIMUCYE
OCHOBHI 3aKOHOMipHOCTi pyxy. Maruu 10CUTh BUCOKY TOUHICTb, 1Sl MOJIEJIb OMIMCY€E 3MiHU CEPENIHIX eJIEMEHTIB OpOITH MPO-
CTUMU aHATITUIHUMHK (hOPMYJIaAMHU i 3pydHa ISl aHaJIi3y BIIACTUBOCTEI OPOIT Ta IMOMepeTHLOTO BUOOPY OMTOPHOI OpOiTH TSt
KOHKPETHOI MiCii.

Karouoei caosa: ananiTuuHa Mojie/b, Malixke KOJIOBi OpOiTH, 30HAJIbHI FTApMOHIKM, CepeiHi eIEMEHTH, 3aKOHOMIPHOCTI PyXY.
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