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MACHINE LEARNING TECHNIQUE 
FOR MORPHOLO GICAL CLASSIFICATION OF GALAXIES FROM SDSS. 
II. THE IMAGE-BASED MORPHOLOGICAL CATALOGS
OF GALAXIES AT 0.02 < Z < 0.1

We applied the image-based approach with a convolutional neural network model to the sample of low-redshift galaxies with –24m < 

< Mr < –19.4m from the SDSS DR9. We divided it into two subsamples, SDSS DR9 galaxy dataset and Galaxy Zoo 2 (GZ2) dataset,

considering them as the inference and training datasets, respectively. To determine the principal parameters of galaxy morphology 
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1. INTRODUCTION

Since the beginning of extragalactic astronomy and

the first catalogs of galaxies by Ch. Messier, F. W. Her-

shel and J. F. W. Hershel, J. L. E. Dreyer, the image-

based morphological classifications of galaxies have

played a vital role in reflecting the evolutionary history

of various types of galaxies and the large-scale struc-

ture of the Universe as a whole (Davis et al. [26], Pee-

bles [74], Barrow & Saich [8], Yang et al. [110], Bundy

et al. [14], Peng et al. [75], Reid et al. [78], Leung et

al. [60].

Manual galaxy morphological classification as 

the most precise method requires extensive usage of 

human resources, either from highly skilled profes-

sionals or, in some cases, amateur astronomers and 

volunteers such as in the Galaxy Zoo (GZ) project 

[109]. Current and near-term galaxy observational 

surveys as the SDSS, LSST, DES, KiDS, SKA, the 

Euclid satellite, JWST, etc., are approaching the Exa-

byte scale multiwavelength databases of hundreds of 

millions of galaxies, which is impossible to classify 

manually. For instance, the Vera C. Rubin Observa-

tory (LSST), which will be be operated starting from 

2022, is expected to generate about 30 TB of data per 

night, revealing ~20 million galaxies over this time 

[49], more than the Sloan Digital Sky Survey (SDSS) 

over its lifetime [10]. It is also worth mentioning the 

Euclid survey, which aims to detect billions of gal-

axies over 15,000 square degrees of the celestial sky 

[3], and other big data astronomical projects (see, 

for example, a recent review of multiwavelength sur-

veys and catalogs by Vavilova et al. [99]). Moreover, 

the human mind is not able to comprehend complex 

correlations in the diverse space of parameters, and 

multidimensional mathematical analysis is the best 

tool for determining the various common features 

between different types of objects. All that exagger-

ates the interest to use the alternatives in the form of 

machine learning (ML) techniques, including deep 

learning (DL), for the classification, forecasting, and 

discovery of various properties of galaxies (see, for 

example, [13, 43, 98]).

In this context, we note several recent prospec-

tive applications of Convolutional Neural Networks 

(CNNs) to classify the galaxies by their different pa-

rameters.

Cabayo et al. [15] have demonstrated the CNN 

capability to avoid distorting effects when extract 

the galaxy photometry from astronomical images as 

Lumos architecture. Exploiting the PAU imaging 

survey, the authors combined a CNN and a Mixture 

Density Network that allowed them to measure the 

photometry of a blended galaxy with the high accura-

cy. Diego et al. [29], in their work with DL in classi-

fying early- and late-type galaxies in the OTELO and 

COSMOS databases, have used optical and infrared 

photometry and available shape parameters (the Sér-

sic index or the concentration index). Regardless of 

defined within the GZ2 project, we classified the galaxies into five visual types (completely rounded, rounded in-between, smooth 

cigar-shaped, edge-on, and spiral). Using GZ2 galaxy morphology classification, we were able to define 34 morphological features 

of galaxies from the inference set of our SDSS DR9 sample, which do not match with the GZ2 training set. As a result, we created 

the morphological catalog of 315782 galaxies at 0.02 < z < 0.1, where morphological five classes and 34 detailed features were first 

defined for 216148 galaxies by image-based CNN classifier. For the rest of galaxies, the initial morphological classification was re-

assigned as in the GZ2 project. 

Our method shows the promising performance of morphological classification attaining >93 % of accuracy for five classes morphol-

ogy prediction except the cigar-shaped (~75 %) and completely rounded (~83 %) galaxies. Main results are presented in the catalog 

of 27378 completely rounded, 59194 rounded in-between, 18862 cigar-shaped, 7831 edge-on, 23119 spiral in the inference 
data set of the studied SDSS sample. As for the classification of galaxies by their detailed structural morphological features, our 

CNN model gives the accuracy in range 92–99 % in depending on features, number of galaxies with the given feature in the infer-

ence dataset, and, of course, the galaxy image quality. As a result, for the first time we assigned 34 morphological detailed 

features (bar, rings, number of spiral arms, mergers, etc.) for more than 160000 low-redshift galaxies from the SDSS DR9. We 

demonstrate for the first time that implication of the CNN model with adversarial validation and adversarial image data 

augmentation improves classification of smaller and fainter SDSS galaxies with mr < 17.7.

The proposed CNN model allows solving a bunch of galaxy classification problems, for example, such as a quick selection of galax-

ies with a bar, bulge, ring, and other morphological features for their subsequent analysis.

Keywords. Methods: data analysis, machine learning, convolutional neural networks; galaxies: general, morphological classification, 

galaxy catalogs, large-scale structure of the Universe.
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slight differences in the photometric bands used in 

each catalog, their neural network architecture oper-

ates well with missing data. 

The distance moduli and photometric redshift es-

timates benefit from the ML utilization into the big 

data sets, which provide a wide number of galaxy fea-

tures for learning. Pasquet-Itam & Pasquet [72] used 

DL for classifying, detecting, and predicting pho-

tometric redshifts of quasars in SDSS. In works by 

Kugler & Gianniotis [58], Speagle & Eisenstein [88], 

Disanto et al. [30], Salvato et al. [82], and Elyiv et 

al. [42] the machine learning methods were applied 

to assign and predict photometric redshifts within 

large-scale galaxy surveys with good accuracy. The 

GAN approach serves as a basis for restoring galaxy 

distribution in the Zone of Avoidance (Schawinski et 

al. [85], Vavilova et al. [97]) and generating dark mat-

ter structures in cosmological simulations (Diakogi-

annis et al. [28]). 

Among the CNNs modeling in tasks of multi-

wavelength sky surveys we note as follows: search for 

blazar candidates in the Fermi-LAT Clean Sample 

[51]; boosted decision tree for detecting the faint 

gamma-ray sources with future Cherenkov Telescope 

Array [57, 81]; infrared color selection of Wolf-

Rayet star candidates in our Galaxy using the Spitzer 

GLIMPSE catalog [70]; cosmic string searches in 

21-cm temperature CMB maps [24]; neural network-

based Faranoff-Riley classifications of radio galaxies

from the Very Large Array archive [4[; deep learning

classification of compact and extended radio source

from Radio Galaxy Zoo project [62]; CNN for mor-

phological assignment to radio-detected galaxies

with active nuclei [64]. Scaife et al. in recent work

presented the first application of group-equivariant

CNN to radio galaxy and their image translations,

rotations, and reflections [84].

Deep learning is promising for generating various 

synthetic catalogs and mock images, which helps to 

interpret the observational data [53] and to discover 

new galaxies as, for example, high-z «blue nuggets» 

from the CANDELS survey [48]; to reveal structural 

properties of dark matter halos to their assembly his-

tory and environment [21]; to establish a topology of 

the large-scale structure of the Universe in LCDM 

cosmological simulation [90]; to separate the radia-

tion from active galactic nuclei and star-forming gal-

axies with recognition method based on Deep Neural 

Network [19].

As for the discovery of new classes of celestial bod-

ies with CNN, we highlight the works related to the 

gravitational lenses [50, 55] and the transient events 

and objects as supernovae, gamma-ray bursts, jets, 

etc. For example, the Catalina Real-Time Transient 

Survey serves as the platform for their detection and 

monitoring (see, for example, [31, 65—66]) as well as 

the Zwicky Transient Factory [9] as the LSST precur-

sor and ML models implementation in synoptic sky 

surveys.

The CNN models have played a crucial role in an-

alyzing data streams from the Advanced Laser Inter-

ferometer Gravitational-Wave Observatory (LIGO) 

detectors allowing to register gravitational wave 

signals from coalescing black hole binaries. Among 

such works are ones on the training an ML system for 

real-time glitch classification [111], on the classifica-

tion of gravitational wave signals, events, and instru-

mental noise [45—46] as well as to test the theories 

on binary black hole mergers upon which the models 

are based [47].

So, CNNs reliably manage with tasks for a variety 

of image-based classification, regression, prediction, 

and discovery of galaxies and other celestial bodies 

(see, obstacle recent overviews by Baron [6], Fluke & 

Jacobs [43], Vavilova et al. [99]. 

In our work, we used a deep CNN model for 

the image-based morphological classification of 

~300000 galaxies (0.02 < z < 0.1) from SDSS DR9. 

To do this, we divided galaxies by their images [112] 

into five morphological classes (completely rounded, 

rounded in-between, cigar-shaped, edge-on, and 

spiral galaxies) as in the Galaxy Zoo 2 (GZ2) proj-

ect. In our previous works [54, 93], we used binary 

classification but, as it turned out, it is difficult to 

correctly divide galaxies into two classes using the as-

signed label of galaxies from the GZ2. We investigate 

the problem of differences in these datasets and sug-

gest ways to overcome adversarial validation. We also 

used our CNN model to predict 34 detailed struc-

tural morphological features (bar, ring, bulge, merg-

ers, number of spiral arms, etc.) of these galaxies with 

ware labeled in GZ2 project [107]. 

The structure of our paper is as follows. The sam-

ple of galaxies is described in Section 2. CNN model 
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tical errors in spectroscopic flux. After excluding the 

images with stars and artifact objects as well as the du-

plicates of galaxy images, the final sample consisted of 

N = 315782 galaxies. To clear the sample from seg-

mented images of the same galaxy, we used our code 

based on the minimal angle distances between such 

SDSS objects. The absolute stellar magnitude of the 

galaxy was obtained by the formula 

Mr = mr – 5lg(DL) – 25 – Kr(z) – extr,

where mr is the visual stellar magnitude in r-band,

DL is the luminosity distance, extr is the Galactic ab-

sorption in r-band in accordance to [86], Kr(z) is the

cosmological k-correction in  r-band according to 

[22, 23]. The color indices were calculated as 

Mg – Mi = (mg – mi) –

– (extg – exti) – (Kg(z) – Ki(z) ),

where mg  and mi are visua l stellar magnitude in g- and

i-band; extg and exti) are the Gala ctic absorption in

g- and i-band; Kg(z) and Ki(z) are the k-correction in

g- and i-band, respectively.

We found that Support Vector Machine gives the

highest accuracy exploiting different galaxy classifica-

tion techniques: human labeling, multi-photometry 

diagrams, and five supervised ML methods. Namely, 

96.1 % early E and 96.9 % late L types of galaxies [98]. 

We verified dependencies between accuracy and red-

shifts, human labeling bias, the overlap of different 

morphological types for galaxies with the same color 

indices, edge-on and face-on galaxy shape to deter-

mine the ability of each method to predict the galaxy 

morphological type. Distribution of 315782 galaxies 

from the studied SDSS sample by their morphological 

type (early and late) is given in Fig. 1.

3. CNN MODELS FOR IMAGE-BASED
MORPHOLOGICAL MULTI-LABEL
CLASSIFICATION OF GALAXIES

The studied sample of 315782 galaxies from SDSS 

DR9 is tightly overlapped with the data from the Gal-

axy Zoo 2, GZ2 [109]. It allows us to divide it into  

two datasets: “inference dataset” of 143410 galaxies, 

which do not match with GZ2 dataset; “training da-

taset” of 172372 galaxies, which match the galaxies 

from our studied sample (Fig. 2). 

For each galaxy from both datasets we have their 

SDSS images, but morphological classes are defined 

Fig. 1. Diagram of color indices (g-i) and inverse concentra-

tion indexes R50/R90 of the studied low-redshift galaxies 

from the SDSS DR9 after applying the Support Vector Ma-

chine (SVM) method: red color — early E (from elliptical to 

lenticular) and blue color — late L (from S0a to irregular Im/

BCG) morphological types. Color bar from 0 to 1 shows SVM 

probability to classify galaxy as the late to the early morpho-

logical type [98]

as the image morpholo gical class ifier, training and 

inference galaxy datasets are presented in Section 3. 

The created galaxy catalogs and results are given in 

Section 4 as well as discussion and conclusion in Sec-

tion 5 and 6, respectively. 

2. SAMPLE OF LOW-REDSHIFT GALAXIES
FROM THE SDSS

We used a representative sample of the 316031 SDSS 

galaxies at 0.02 < z < 0.1 (with velocities correction 

on the velocity of Local Group, VLG > 1500 km/s).

This sample was studied by us practically as “galaxy 

by galaxy” in previous works [18, 32—36, 41, 67, 77, 

92—95, 98, 100, 105]. Our most previous research 

was to apply the ML photometry-based approach for 

binary morphological classification of these galaxies 

[98] and to create the catalog of their morphological

types (early and late) obtained with the Support Vec-

tor Machine with an accuracy of  96.4 % [102].

The main stages in preparing this sample were as 

follows. A preliminary set of galaxies at z < 0.1 with 

the absolute stellar magnitudes –24m < Mr < –13m

from the SDSS DR9 contained of ~724000 galaxies. 

Following the SDSS recommendation, we limited the 

sample to mr < 17.7 in r-band to avoid typical statis-
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only for galaxies from the training GZ2 dataset. The 

315782 RGB images of galaxies were requested from 

the SDSS (http://skyserver.sdss.org/dr15/en/help/

docs/ api.aspx##cutout). They are composed of gri-

bands [63] having color scaling, each of 100  100 
3 pixels (39.6  39.6 arcsec) in each channel of the 

RGB image.

3.1. Galaxy morphological image classification 
into five classes by shape. It is important to note 

the principal difference between galaxy images in 

our inference dataset and the GZ2 training data-

set. Galaxies from the inference dataset are much 

shallower than those from the GZ2 dataset. As we 

mentioned in Section 2, the galaxies from the stud-

ied sample were pre-selected via mr < 17.7 limit fol-

lowing the SDSS recommendation. This affects the 

value of the 90 % Petrosian flux parameter. Thereat, 

the galaxies, which do not match the GZ2 dataset, 

are fainter and smaller on average than galaxies from 

the training GZ2 dataset. To get around this prob-

lem, we used an adversarial CNN to compare these 

two datasets (training and inference). Namely, we 

trained it on all galaxy images of our sample, passing 

the class ‘0’ for the inference dataset and class ‘1’ 

for the training dataset (Fig. 2).

To develop the CNN model based on the images 

of galaxies, we used the GZ2 assigned labels for five 

morphological classes by shape: completely round-

ed, rounded in-between, cigar-shaped, edge-on,  and 

spiral galaxies. 

We provided additional data cleaning of 172372 

galaxy images from the training sample and took into 

consideration only those galaxies for which GZ2’s 

volunteers gave the most votes for a more accurate 

result (Fig. 2). It turned out to be 72738 galaxies. The 

criteria for each image of the galaxy were defined 

in GZ2 project [109]; their description is available 

through web-site https://data.galaxyzoo.org/. The 

criteria with (*_count) prefix indicate the number of 

votes of volunteers; other criteria correspond to the 

debiased fraction of votes assigned in the GZ2 cata-

log as (*_debiased). So, we applied criteria for gal-

axies belonging to the five morphological classes by 

shape as follows 

 completely rounded: smooth (number of votes

>0.469), completely_round (>0.469), smooth_count 

(>25), completely_round_count (>25);

 rounded in-between: smooth (>0.469),

rounded_in_between (>0.5), smooth_count (>25), 

rounded_in_between_count (>25);

 cigar-shaped: smooth (>0.469), cigar_shaped

(>0.5), smooth_count (>25), cigar_shaped_count 

(>25);

 edge-on: features_or_disk (>0.43), edgeon_yes

(>0.602), features_or_disk_count (>25), edgeon_

yes_count (>25);

Fig. 2. Block-scheme of the image-based classification of galaxies with CNN model for five morphological classes. Algorithm 

consists of the training/inference datasets, image data preparation, adversarial validation, special train-test split via adversarial 

scores, data augmentation, CNN classifier
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 spiral: features_or_disk (>0.43), edgeon_no

(>0.715), spiral (>0.619), features_or_disk_count 

(>25), edgeon_no_count (>25), spiral_count (>25). 

These criteria with vote scores >0.4 and higher were 

found to be quite good for providing reliable image-

based morphological classification of galaxies. The gal-

axy image data preparation and augmentation for our 

CNN model is described in detail in our paper [56].

The adversarial CNN resulted in the fact that the 

training dataset contains galaxies, which proper-

ties are not common with inference one. The useful 

parameter to solve this task is the adversarial score, 

which means the probability of the galaxy with some 

feature to be similar to the galaxy with the same fea-

ture from the GZ2 training set. So, we can test gal-

axies with a low adversarial score from the training 

dataset in a way to train them on galaxies with the 

high adversarial score from the training set (Fig. 2). 

On the step of this “train-test split”, we randomly se-

lected ~9000 galaxies with an adversarial score less 

than 0.7 to test the CNN classifier (test-split training 

dataset), and the rest part of this dataset (~63000) to 

train the CNN classifier (train-split training dataset). 

Because this score is related to the presence of faint-

er and smaller galaxies in the inference galaxies, we 

have done the image data augmentation of galaxies 

from the training sample (we decreased the intensity 

of pixels and reduced the image size). Distribution 

of predicted labels vs. true labels of five morphologi-

cal classes for these ~9000 galaxies with the high ad-

versarial score as the confusion matrix is shown in 

Table 1. One can see in Table 1 that our model for 

CNN classifier guarantees > 93 % of accuracy for 

rounded in-between, edge-on, and spiral morpho-

logical classes, 83 % for the completely rounded and 

75 % for the cigar-shaped galaxies.

As a result of the CNN classifier, we got the mor-

phological classes of 72738 galaxies from the train-

ing set as follows: 19468 completely rounded, 27321 

rounded in-between, 3235 cigar-shaped, 4099 edge-

on, and 18615 spiral galaxies.

Meanwhile, knowing the morphological class of 

galaxies from the training dataset, we are able to clas-

sify galaxies from the inference dataset with CNN. 

We compared a few CNN models for the five-class 

morphological classification. Following our previous 

works [54, 93] the best neural network for our task is 

DenseNet-201. 

Our CNN model consists of two main parts. The 

first one is the convolutional part, where CNN per-

forms the image processing with a gradually decreasing 

size. The highlight of CNN architectures is to use the 

fully connected layers at the tail. This tail corresponds 

to the neural network classifier, which transforms the 

output of the convolutional part into the dense layer, 

the number of neurons in which is equal to the number 

of classes (see, for example, http://cs231n.stanford.

edu/). So, the second part of our model is the fully 

connected part, where the processed galaxy image 

comes through a few layers of connected neurons up 

to the last layer, consisting of five neurons, the output 

of which corresponds to the probability of a galaxy be-

ing one of five defined classes.

Our CNN model was completed by the two dense 

layers of neurons (with the number of neurons equal  

128 and 5, respectively) and, after, by the global max-

pooling. The activation functions at the tail of the CNN 

model were the same as in adversarial validation. As an 

optimizer, we used the ADAM with an initial learning 

rate of 10–4; the optimizer minimized the categorical_

crossentropy loss function (see, in detail, [56]). 

3.2. Galaxy morphological multi-label classification 
by 34 features. Besides classification into five morpho-

logical classes, the image galaxies from the training 

dataset attribute 37 parameters of the detailed mor-

phology. They are estimated for each galaxy according 

Table 1. Distribution of predicted labels vs. assigned labels 
as the probabilities for galaxy to belong to one of five 
morphological classes (CNN classifier for test-split training 
galaxy dataset of 9000 galaxies). Each row represents the 
fraction of galaxies from a certain class (defined at the 
horizontal row) to be classified as galaxies from other classes

True labels

Predicted labels

Completely 

rounded

Rounded 

in-between

Cigar-

shaped
Edge-on Spiral

Completely 

rounded 0.83 0.16 0 0.00038 0.012

Rounded 

in-between 0.054 0.93 0.0047 0.00025 0.015

Cigar-

shaped 0 0.17 0.75 0.065 0.017

Edge-on 0 0.0076 0.049 0.93 0.0092

Spiral 0.0075 0.022 0.0017 0.0092 0.96
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to volunteers’ answers and form the decision tree [80, 

109]. The principal restriction for classification with 

CNN is the presence of the only parameter, which 

characterizes this class of objects on an image [59]. We 

introduced the “similarity learning” approach: if two 

galaxies have similar images, then their morphological 

parameters are similar. In other words, we exploited 

the galaxy images from the training dataset, which are 

most similar to the galaxy images from the inference 

dataset by their 37 morphological detailed features. 

The algorithm is finding the nearest galaxies from 

the training dataset to the target galaxy of the infer-

ence dataset in the penultimate CNN layer of multi-

parameter space and assigns the attributes of nearest 

neighboring galaxies to the target galaxy.

We also applied the adversarial validation to pre-

dict 37 detailed morphological features of galaxy im-

ages from the inference dataset with some adversarial 

score. The three very sparse features were removed 

from the consideration. So, we worked with the in-

ference dataset of 160471 galaxies and with 34 galaxy 

morphological features (bar, ring, various number of 

spiral arms, disks, dust lane, merger etc.). 

These morphological features are listed in Table 2. 

The names of features (“parameter”) are given in the 

first column as they are labeled by the GZ2’s volun-

teers. The numbers of galaxies in the inference da-

taset with the given feature are given in column 2. 

Columns 3—5 contain the ROC AUC1 classifica-

tion quality metric (ROCtest) for galaxies of GZ2 

dataset. Two resulting accuracy scores, measured 

with ROC AUC classification quality metric, give 

the score for the model trained with adversarial aug-

mentations (ROCtest AUG, column 4) and for the 

model, trained without these augmentations (ROC-

test NOAUG, column 3). As the binary classification 

quality metric we used Area Under Receiver Operating 

Characteristic Curve (ROC AUC). To estimate the 

ROC AUC, one needs to plot the following curve: 

the fraction of true positives out of the positives 

(TPR = true positive rate) versus the fraction of false 

positives out of the negatives (FPR = false positive 

rate) at various threshold settings to estimate the area 

under this curve. For ideal classification, ROC AUC 

1 ROC AUC is the Receiver Operating Characteristics, which 

is determined with Area Under Curve quantitate value.

Table 2. Quality metrics of morphological detailed features 
of galaxies from the inference dataset

Feature’s name [109]
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1 2 3 4 5

smooth 624 89.25 88.59 0.66 

features_or_disk 19 770 92.54 91.88  0.66  

star_or_artifact 6 95.36 97.63  2.28

edgeon_yes 2 079 98.81 98.65 0.16 

edgeon_no 7 504 97.21 96.82 0.39 

bar 90 93.99 92.41 1.57 

no_bar 1 762 90.69 89.80 0.90 

spiral 1 199 93.40 92.88 0.52 

no_spiral 47 86.30 84.78 1.52 

no_bulge 63 98.36 98.35 0.01 

odd_yes 1 096 94.78 93.37 1.41 

odd_no 61 537 84.62 83.51 1.11 

completely_round 6 018 96.17 95.60 0.58 

rounded_in_between 20 107 92.31  91.46 0.85 

cigar_shaped 12 434 97.96 97.73 0.23 

ring 52 96.97  96.43 0.54  

irregular 41 96.74 96.94 0.20 

other 4 95.93 89.20 6.74 

merger 8 91.79 88.89 2.90 

dust_lane 4  99.39 99.40  0.02 

bulge_shape_rounded 18 96.73 96.27 0.47 

bulge_shape_no_bulge 664 98.65 98.52 0.13 

arms_winding_tight 3 89.45 88.60 0.85 

arms_winding_medium 2 75.33 77.59 2.26 

arms_winding_loose 100 94.95 94.41 0.54 

arms_number_2 338 90.55 89.99 0.56 

arms_number_3 1 93.54 93.47 0.07 

arms_number_4 1 93.84 85.45 8.39 

arms_number_more_

than_4

1 97.79 97.51 0.27 

arms_number_cant_tell 1 86.13 86.07 0.06  

equals 1; for random, it is 0.5. For more information 

about ROC AUC classification quality metric mea-

suring, see the paper by Bradley [12]. Column 5 gives 

the difference between ROCtest AUG and ROCtest 

NOAUG values.
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One can compare these scores and estimate the 

degree of influence of image data augmentations on 

the classification quality of a trained model. Scores 

are given for the dataset of 9000 galaxies, expanded 

with a fraction of galaxies, which do not pass the cri-

teria of morphological classification. 

There is a particular discrepancy in the numbers 

of galaxies with detailed morphological features from 

the training dataset. It can be explained, among other 

things, by the fact that the GZ’ volunteers did not 

notice certain morphological details while the CNN 

classifier found.

4. IMAGE-BASED CATALOGS OF LOW-REDSHIFT SDSS 
GALAXIES CLASSIFIED BY FIVE MORPHOLOGICAL 
CLASSES AND 34 MORPHOLOGICAL FEATURES

Applying the CNN classifier to the inference galaxy 

dataset (low panel in Fig. 2), we took into account the 

following labels of galaxies: predictions of belonging 

to one of five morphological classes (Table 1) and 

34 detailed morphological features (Table 2). The 

augmentation procedures for image data of galaxies 

(«decrease in stellar magnitude and correction of 

sizes») from the training dataset are described in our 

work [56].

We have trained our CNN classifier having attained 

the overall accuracy of 89.3% on the test set of 9000 

galaxies obtained after splitting the training galaxy set 

(see, the distribution of predicted labels vs. true labels 

as the probabilities for galaxy to belong to one of five 

morphological classes in Table 1). Assuming that a 

galaxy is in a certain morphological class if the prob-

ability is the highest one, we found that the inference 

dataset contains of 27378 co mpletely rounded, 59194 

rounded in-between, 18862 cigar-shaped, 7831 edge-

on, and 23119 spiral galaxies. 

So, a common classification of the studied sample 

of 315782 low-redshift SDSS galaxies with mr < 17.7 
and VLG >1500 km/s into five morphological classes 
consists of the following parts: 

 72738 galaxies from the training dataset and

143410 galaxies from the inference dataset, which 

have undergone CNN model with the high adver-

sarial score and the accuracy pointed in Table 1. It 

turned out 46846 completely rounded, 86515 round-

ed in-between, 22097 cigar-shaped, 13930 edge-on, 

and 41738 spiral galaxies.

 105560 galaxies from the studied sample were

not classified with CNN model because of their low 

adversarial score (98534 galaxies) or technical reasons 

(7026 galaxies). We left the initial morphological 

classification for these galaxies into five classes as it 

was assigned in the GZ2 project.

Examples of the inference galaxies with their five 

nearest neighbors (in multi-label parametric space) 

Fig. 3. A set of the inference galaxies (first column) with their 

five nearest neighbors from the GZ2 training dataset (the rest 

four columns). Each row represents the morphological class, 

which is intrinsic to the galaxy from the inference set. The 

number in the left upper corner of each image of the inference 

galaxies is a value of the corresponding probability of being 

this galaxy in a given class. Some classes of galaxies from the 

GZ2 training set are pointed out when possible (not all of the 

GZ2 galaxies fit our criteria for CNN classifier)
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Fig. 4 (parts 1—2). The examples of galaxies with some morphological features (smooth, features or disk, star or artifact, edge 

on yes, edge on no, bar, no bar, spiral, no spiral, no bulge, bulge just noticeable, bulge obvious, odd yes, odd no, completely 

rounded, rounded in between, see Table 2) from the inference SDSS dataset with their two nearest neighbors from the GZ2 

training dataset
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Fig. 4 (parts 3—4). The examples of galaxies with some morphological features (cigar shaped, ring, irregular, merger, dust lane, 

bulge shape rounded, bulge shape no bulge, arms winding tight, arms winding medium, arms winding loose, arms number 1, 

arms number 2, arms number 3, arms number 4, arms N more then 4, arms N can’t tell, see Table 2) from the inference SDSS 

dataset with their three nearest neighbors from the GZ2 training dataset



13ISSN 1561-8889. Космічна наука і технологія. 2022. Т. 28. № 1

Machine learning technique for morphological classification of galaxies from SDSS. II. The image-based morphological catalogs ...

Table 3. Examples of five galaxies from the Catalog of morphological classes of low-redshift galaxies 
from SDSS DR9, which have the highest probability to belong to the completely rounded, 
rounded in-between, cigar-shaped, edge-on, and spiral morphological classes

Identifier

Coordinates Probability

Ra Dec
Completely 

rounded

Rounded 

in-between

Cigar-

shaped
Edge-on Spiral

SDSS ObjID 1237655468061294796

2MASS J15063732+0113452

226.655531 1.229153 0.9976 0.0023 0.0602 0.0554 0.0417

SDSS ObjID 1237660960793428158

2MASS J09283138+3507071 

142.130736 35.118625 0.0001 0.9998 0.0424 0.0365 0.0263

SDSS ObjID 1237648722321473797

2MASS J14352175+0050296 

218.840662 0.841566 0.0439 0.0004 0.9995 0.0257 0.0093

SDSS ObjID 1237648722290606136

2MASS J09532021+0041516 

148.334281 0.697737 0.0338 0.1159 0.0004 0.9997 0.0053

SDSS ObjID 1237660240312795177

2MASS J03114746-0024108 

47.947759 -0.402997 0.0059 0.0038 0.0414 0.0279 0.9994

Table 4. Examples of five galaxies from the Catalog of morphological classes of low-redshift galaxies 
from SDSS DR9, which have the highest probability to have ring, bar, irregular shape, dust lane, two spiral arms

Identifier

Coordinates Probability

Ra Dec Bar Ring Irregular
Dust 

lane

Arms 

number 2

SDSS ObjID 1237662198283633002

2MASS J15105965+0829209

227.748594 8.489149 0.9922 0.0657 0.0000 0.0000 0.3236

SDSS ObjID 1237665101137641844

2MASS J14201619+3017044 

215.067510 30.284630 0.0002 0.9528 0.0000 0.0000 0.0129

SDSS ObjID 1237668311087972614 229.630080 14.677338 0.0004 0.0000 0.7009 0.0000 0.0113

SDSS ObjID 1237662262714368418

2MASS J15344528+0549459 

233.688611 5.829438 0.0003 0.0000 0.0000 0.8559 0.0061

SDSS ObjID 1237662196139163742

2MASS J12453820+4332122 

191.409199 43.536667 0.0002 0.0000 0.0000 0.0000 0.9778

from the GZ2 training dataset classified onto five 

morphological classes with a given accuracy are 

shown in Fig. 3.

Also, we determined the number of galaxies that 

passed the 0.5 cut-off for the acceptance of the de-

tailed morphological features. The number of such 

galaxies with the certain feature in the inference 

dataset is presented in Table 2. The examples of in-

ference galaxies with some of these morphological 

features (ring, bar, merger, irregular, arms_winding_

loose etc.) with two nearest neighbors (in multi-label 

parametric space) from the GZ2 training dataset are 

shown in Fig. 4. The mosaics of galaxies in Fig. 3 and 

Fig. 4 illustrate well how our CNN classifier work in 

finding the similar morphological features of vari-

ous galaxies, for instance, to find the edge-on galax-

ies turned to the observer under the same angles (see 

seventh and eighth rows in Fig. 3) or to find the gal-

axies with similar morphological features as ring, bar 

or bulge (Fig. 4, part 3–4).

We used additional morphological parameters 

such as a bar or ring to predict the presence of these 

features in galaxies from our inference set. Because 

these features are not mutually exclusive, we intro-

duce a different approach to determine their types. 

Namely, we assumed that the penultimate layer of a 



14 ISSN 1561-8889. Космічна наука і технологія. 2022. Т. 28. № 1

I. B. Vavilova, V. Khramtsov, D. V. Dobrycheva, M. Yu. Vasylenko, A. A. Elyiv, O. V. Melnyk

neural network consisting of 128 neurons must clear-

ly characterize the galaxy. In its turn, the neighbor-

ing galaxies in the multidimensional parameter space 

must have the same characteristics. By determining 

the optimal number of nearest neighbors for the most 

accurate prediction and the optimal value of trim-

ming the likelihood of signs, we test our hypothesis 

on a deferred GZ2 dataset and found a good confir-

mation.

We created the catalog of 315782 low-redshift gal-

axies from SDSS DR9, where morphological classes 

and detailed features were defined for the first time 

for 216148 galaxies by an image-based CNN classi-

fier. For the rest of the galaxies (with the lower adver-

sarial score) the initial morphological classification 

was re-assigned as in the GZ2 project. These new 

data will be added to our previous “Binary morphol-

ogy SDSS galaxies catalog” [102]2, see also: http://

skyserver.sdss.org/dr9 (SDSS DR9 Home Page). Ex-

amples of five galaxies from this catalog, which have 

the highest probability to belong to the completely 

rounded, rounded in-between, cigar-shaped, edge-

on, and spiral morphological classes, are listed in 

Table 3. Examples of five galaxies from this catalog, 

which have the highest probability to assign ring, bar, 

dust lane, and other morphological, structural fea-

tures, are listed in Table 4.

5. DISCUSSION

Classification of morphological types and features of 

galaxies is one of the cornerstones for extragalactic 

astronomy and observational cosmology. Galaxies of 

different morphological types are distributed non-

uniformly across the sky and along the cosmological 

scale. The early-type galaxies predominate in the 

central part of the cluster. They also have larger 

masses, less gas, higher velocity dispersion, and 

diverse stellar population than the late-type galaxies 

(see, for example, these works [5, 7, 17, 25, 32, 33, 

52, 71, 76, 77, 79, 89, 91, 100, 106]). 

Astronomical surveys have accumulated a large 

number of galaxy images and data that need deep 

scientific exploration. For this purpose, it is very con-

venient to use relevant methods for a reliable galaxy 

morphological automated classification. There are 

2 https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/648/A122

many different options for sorting galaxies by type 

now, but each has its own drawbacks. For example, 

broad spectra of data are lost in spectroscopy classi-

fication because not all galaxies have spectra of good 

enough quality. Classifications based on the photom-

etry give an error when trying to classify red spirals 

[92, 98], i.e., galaxies with a high content of old stars 

or interacting galaxies which affect the photometric 

characteristics of each other [11, 68, 73].

In favor of our choice of CNN as a basic model, 

we will mention several papers related to the image-

based and photometry-based galaxy morphology 

classification with accentuating on the SDSS and 

Galaxy Zoo samples [61].

Cabrera et al. [16] explained how the human la-

beled biases in morphological photometry-based 

classification could be reduced through supervised 

ML. This coincides with our conclusion [101], where

we discuss which factors and properties of galaxies

exactly affect the accuracy of supervised methods.

In that paper, we concluded that one could not get

the accuracy significantly exceeding 76 % when us-

ing the GZ2 data as a training set for ML with the

photometry-based approach. One of the reasons

is the attribution of irregular galaxies in the GZ2,

which have the redder color indices, to the ellipti-

cal (early) type, and vice versa the elliptical galaxies

with the bluer color indices to the spirals. In any case, 

the morphology obtained with the ML trained pho-

tometric parameters demonstrates significantly less

bias than morphology based on citizen-science clas-

sifiers. This conclusion is also important for galaxies

with low surface brightness galaxies [40].

For example, Cheng et al. [20] used a set of ~2800 

galaxies from Dark Energy Survey with visual clas-

sification from GZ1 to compare ML methods for 

galaxy classification: CNN, K-Nearest Neighbor, 

Logistic Regression, Support Vector Machine, Ran-

dom Forest, and Neural Networks. They revealed 

that CNN was the most successful method in their 

study giving an accuracy of 99.4 % for the binary 

morphological classification of ellipticals and spirals. 

As for the combination of photometry and image gal-

axy SDSS data with Galaxy Zoo labels, we note the 

work by Hayat et al. [1], who applied self-supervised 

representation learning. Mittal et al. [69] introduced 

the data augmentation-based MOrphological Clas-
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sifier Galaxy (daMCOG CNN) using convolutional 

neural network and obtained a testing accuracy of 

98 %. Their datasets of 4614 images were collected 

from SDSS Image Gallery, Galaxy Zoo challenge, 

and Hubble Image Gallery.

Walmsley et al. [107] used Bayesian CNNs and 

a novel generative model of Galaxy Zoo volunteer 

responses to infer posteriors for the visual morphol-

ogy of galaxies. They show that training Bayesian 

CNNs with active learning requires up to 35—60 % 

fewer labeled galaxies depending on the morphologi-

cal feature being classified. They concluded that in 

the synergy of human and machine intelligence, the 

Galaxy Zoo would be able to classify surveys of any 

conceivable scale, providing massive and detailed 

morphology catalogs to support research into galaxy 

evolution. These authors in their next paper [108] 

used Galaxy Zoo data (SDSS DR8) and DECaLS 

data [27] to provide the detailed visual morphology 

measurements in grb-bands with Bayesian DL classi-

fier for 314000 galaxies brighter than mr = 17.77 at z < 

0.15. Applying RGB image construction and various 

methods for the data processing, these authors were 

able to improve decision trees for GZ2’ volunteer 

classification of galaxy morphological features. 

Several useful catalogs were developed with the 

GZ classification scheme. Willett et al. [109] issued 

a catalog of morphological types from the GZ2 in 

the synergy with the SDSS DR7, which contains 

more than 16 million morphological classifications 

of 304122 galaxies and their finer morphological fea-

tures (bulges, bars, and the shapes of edge-on disks as 

well as parameters of the relative strengths of galactic 

bulges and spiral arms). Simmons et al. [87] cross-

verified morphological features of ~48000 galaxies 

from the CANDELS survey and GZ project (clump-

iness, bar instabilities, spiral structure, merging). It 

allowed them to create a list of galaxies with feature-

less discs at 1   z  3, representing “a dynamically 

warmer progenitor population to the settled disc gal-

axies seen at later epochs”. 

Dominguez-Sanchez et al. [37] presented a mor-

phological catalog for ~670000 SDSS-galaxies in two 

options: T-type, related to the Hubble sequence, and 

GZ2 types. Their models with DL for the GZ2 type 

questions have the highest accuracy (>97 %), when 

applied to a test dataset with the same characteristics 

as the one used for the training dataset. In the recent 

work [38], they presented the MaNGA Deep Learn-

ing Morphological Value Added Catalog as a part of 

the SDSS DR17. This catalog includes a number 

of morphological properties: e.g. a T-Type, a finer 

separation between elliptical and S0, as well as the 

identification of edge-on/barred galaxies and a sepa-

ration between early/late types.

Vega-Ferrero et al. [103] presented morphologi-

cal classifications of ~27 million galaxies from the 

Dark Energy Survey (Data Release 1). They pro-

vided CNN model to classify these galaxies by early 

and late types (accuracy ~87 %) as well as by face-

on and edge-on galaxies (accuracy 73 %). In work by 

Domingo-Sanchez et al. related to the algorithm for 

preparing this largest automated morphological cata-

log up to date [39], the authors describe how their 

trained SDSS image data of galaxies were transferred 

on Dark Energy survey images. They also modeled 

fainter objects by simulating what the brighter objects 

with well-determined classifications would look like 

if they were at higher redshifts. This is the same as we 

applied in our approach.

The results mentioned above are quite comparable 

in accuracy with each other in determining the pecu-

liarities of galaxies being in good agreement with our 

results. They evident that CNN models are effective 

enough for image-based classification of galaxy mor-

phological features. 

In general, our method shows a satisfactory level 

of morphological classification performance, attain-

ing more than 90 % of accuracy for most morpho-

logical classes (Table 1). Such value of the accuracy 

is in good agreement with the accuracy obtained in 

the work by Walmsley et al. [107], who used Bayes-

ian CNN to study Galaxy Zoo volunteer responses 

and achieved coverage errors of 11.8 % within a vote 

fraction deviation of 0.2. As well as with work by 

Gauthier et al. [44], who applied both supervised and 

unsupervised methods to study the Galaxy Zoo data-

set of 61578 pre-classified galaxies (spiral, elliptical, 

round, disk). They found that the variation of galaxy 

images is correlated with brightness and eccentricity, 

and the accuracy for galaxies to be associated with 

each of these four classes is about 94 %. 

As for the classification of galaxies by their de-

tailed structural morphological features, our CNN 
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model gives the accuracy in the range of 92–99 % 

depending on features, a number of galaxies with the 

given feature in the inference dataset, and, of course, 

the galaxy image quality (Table 2). As a result, for the 

first time we assigned 34 morphological detailed fea-

tures for more than 160000 low-redshift galaxies with 

mr <17.7 from the SDSS DR9, which have the highest 

adversarial score by our CNN classifier. If we com-

pare our result with a largest galaxy morphological 

catalog presented by Vega-Ferrero et al. [103], where 

the face-on and edge-on galaxies were classified by 

their images with an accuracy of 73 %, we constitute 

that our CNN model gives a more significant output.

6. CONCLUSION

We developed a CNN model for image-based galaxy 

morphological classification. The studied sample of 

315782 galaxies with mr < 17.7 from SDSS DR9 at

0.02 < z < 0.1 is overlapped with the data from the 

Galaxy Zoo 2 (GZ2). It allowed us to divide it into  

two datasets: “inference dataset” of 143410 galaxies, 

which do not match with the GZ2 dataset; “training 

dataset” of 172372 galaxies, which match with galax-

ies from our studied sample.

To develop the CNN model based on the images 

of galaxies, we used the GZ2 assigned labels for five 

morphological classes by shape and for 34 detailed 

structural morphological features of galaxies. We 

revealed that adversarial validation is very helpful 

when the labeled datasets are biased in magnitude 

distribution for the training dataset, and such a dif-

ference could bias the final prediction of the classi-

fier on the inference dataset. To avoid this problem, 

we applied the adversarial validation method for 

analyzing the homogeneity of these two datasets and 

for modeling fainter galaxies. As a result, the galax-

ies were selected from the training dataset with the 

highest adversarial score that are most closely co-

incided with the inference dataset, and the images 

were normalized to be similar. Our CNN classifier 

has demonstrated >93 % of accuracy for rounded in-

between, edge-on, and spiral morphological classes, 

83 % for the completely rounded, and 75 % for the 

cigar-shaped galaxies. Assuming that a galaxy is in 

a certain morphological class if the probability is 

the highest one, we found that the inference dataset 

contains 27378 completely rounded, 59194 rounded 

in-between, 18862 cigar-shaped, 7831 edge-on, and 

23119 spiral galaxies.

As for the detailed structural features of galaxies, 

we worked with the inference dataset of 160471 gal-

axies and with 34 galaxy morphological features (bar, 

ring, various number of spiral arms, disks, dust lane, 

merger, etc.) as they are labeled by the GZ2’s vol-

unteers. We used ROC AUC (Area Under Receiver 

Operating Characteristic Curve) as the binary clas-

sification quality metric, which gives accuracy scores 

for the model trained with adversarial augmenta-

tions and for the model trained without these aug-

mentations. Our CNN model provides the accuracy 

in the range of 92–99 % depending on the features, 

the number of galaxies with the given feature in the 

inference dataset, and, of course, the galaxy image 

quality. As a result, for the first time, we have also vi-

sually inspected the galaxy images. As a result, for the 

first time we assigned 34 morphological detailed fea-

tures for more than 160000 low-redshift galaxies with 

mr < 17.7 from the SDSS DR9, which have the high-

est adversarial score by our CNN classifier.

In general, we created the catalogs of 315782 low-

redshift galaxies from SDSS DR9, where morpho-

logical classes and detailed features were defined for 

the first time for 216148 galaxies by the image-based 

CNNclassifier. For the rest of galaxies (with the 

lower adversarial score) the initial morphological 

classification was re-assigned as in the GZ2 project. 

These catalogs can be accessed through the VizieR 

CDS platform. A vector representation of the prob-

ability distribution of a galaxy having one or another 

feature (the penultimate layer of our CNN model) 

can be founded at the Ukrainian Virtual Observa-

tory [96] web-site (http://ukr-vo.org/catalogs). 

This will be of interest to those who will study the 

similarities between galaxies in more detail. Our ap-

proach to the image data augmentation can be ap-

plied as the mathematical tools in tasks of positional 

and photometrical processing CCD frames, archive 

astroplates in various bands, transient objects, ar-

tifacts [31, 70, 81, 83, 104]. The proposed CNN 

model allows solving a bunch of galaxy classifica-

tion problems, for example, such as a quick selec-

tion of galaxies with a bar, bulge, or ring for their 

subsequent analysis. Our approach consumes the 

time at the stage of preliminary preparation of the 
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studied galaxy dataset and can be useful for further 

studies of the morphology, image, photometry, and 

spectroscopic data of galaxies.
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МАШИННЕ НАВЧАННЯ ДЛЯ МОРФОЛОГІЧНОЇ КЛАСИФІКАЦІЇ ГАЛАКТИК ІЗ ОГЛЯДУ SDSS. 

II. МОРФОЛОГІЧНІ КАТАЛОГИ ЗОБРАЖЕНЬ ГАЛАКТИК НА 0.02 < Z < 0.1

Ми застосували згорткову нейронну мережу (CNN) до вибірки зображень галактик на малих червоних зміщеннях із −
24m < Mr < −19.4m огляду неба SDSS DR9. Ми розділили її на дві підвибірки галактик SDSS DR9 і галактик Galaxy Zoo 

2 (GZ2), розглядаючи їх як цільову з невідомими параметрами (inference) та навчальну (training), відповідно. Щоб 

визначити основні морфологічні параметри галактик, визначені в рамках проекту GZ2, ми класифікували галактики 

на п’ять візуальних класів (повністю заокруглені, майже заокруглені, гладкі сигароподібні, видимі з ребра, 

спіральні). Використовуючи класифікацію морфології галактик GZ2, ми також визначили 34 морфологічні 

характеристики галактик із вибірки SDSS DR9, які не збігаються з навчальною підвибіркою галактик GZ2. У 

результаті ми створили морфологічний каталог зображень 315782 галактик на 0.02 < z < 0.1, де морфологічні п’ять 

класів і 34 детальні характеристики були вперше визначені для 216148 галактик із застосуванням CNN 

класифікатора. Для решти галактик початкову морфологічну класифікацію було перевизначено, як у проекті GZ2. 

Наш метод демонструє багатообіцяючу ефективність морфологічної класифікації, що досягає понад 93 % точності 

для прогнозування морфології п’яти класів, за винятком сигароподібних (~75 %) та повністю округлених (~83 %) 

галактик. В результаті були отримані каталоги 27378 повністю заокруглених, 59194 майже заокруглених, 18862 сига-

роподібних, 7831 видимих з ребра, 23119 спіральних галактик (inference) досліджуваної вибірки SDSS. Що 

стосується класифікації галактик за їхніми детальними структурними морфологічними особливостями, то наша 

модель CNN дає точність 92–99 % залежно від морфологічної ознаки та якості зображення галактики. Створено 

каталоги, де вперше 34 детальні морфологічні особливості (бар, кільця, кількість спіральних рукавів, злиття тощо) 

визначено для понад 160000 галактик цільової підвибірки SDSS DR9. Ми вперше показуємо, що застосування моделі 

CNN зі змагальною валідацією та математичними перетвореннями зображень галактик по-кращує класифікацію 

менших за розмірами та слабкіших mr < 17.7 галактик SDSS.

     Запропонована модель CNN дозволяє вирішити різні проблеми класифікації галактик, таких як швид-кий відбір 

галактик із баром, балджем, кільцем та іншими морфологічними особливостями для їх подальшого аналізу . 

Ключові слова. Методи: аналіз даних, машинне навчання, згорткові нейронні мережі; галактики: морфологічна кла-

сифікація, зображення галактик, каталоги галактик, великомасштабна структура Всесвіту.




