Technology for Deep Purification of Cesium Iodide Single Crystal Production Wastes from Heavy Metals
DOI:
https://doi.org/10.15407/scine16.01.045Keywords:
cesium iodide, heavy metals, magnesium, purification, technogenic solutionAbstract
Introduction. The production of CsI-based scintillation crystals results in accumulation of wastes formed during the crystal growth and as a result of the mechanical treatment. Therefore, thorough purification from heavy metals is the main condition of CsI recycling for the further application in obtaining the different activated single crystals.
Problem Statement. Thallium is one of the main admixtures in the wastes of CsI-based crystal production because it is used as an activating admixture for the of CsI:Tl crystals. Since Tl is referred to heavy metals which are hardly removable from the wastes of CsI crystal production the development of the purification technology of technogenic CsI solution from admixtures of heavy metals is necessary.
Purpose. The development of technology providing purification of the wastes of CsI-based crystal production to the level required by national normative documentation for extra pure CsI.
Materials and Methods. Materials: the liquid wastes of CsI-based crystal production (the CsI solution), activated carbon, metallic magnesium, barium hydroxide, cesium carbonate. Methods: the treatment of mixture of the heated CsI solution with the purifier by stirring, the multiple filtering of the heated CsI through the cartridge filters filled with purifying reagents.
Results. The method for treatment of technogenic CsI solution with magnesium at heating and stirring proved to be successful under laboratory conditions, however, attempts to level it up for the industrial scale failed. Multiple filtering of the heated reagent mixture through the cartridge filters filled with purifying reagents proved to be better and led to successful industrial examinations. It gives the possibility to obtain the extra pure product, CsI, meeting requirements of TU U 24.13.31331736-002-2004 for cesium iodide.
Conclusions. A new technology for deep purifying the wastes of CsI-based crystal production from heavy metals including thallium has been developed.
References
Efimov, A. I., Belorukova, L. P., Vasil’kova, I. V., Chechev, V. P. (1983). Properties of inorganic compounds. Leningrad: Khimiya [In Russian].
Cherginets, V. L., Ponomarenko, T. V., Rebrova, T. P., Varich, A. G., Rebrov, A. L., Datsko, Yu. N. (2018). On the features of crystallization methods used for the purification of aqueous solutions of cesium iodide. Functional Materials, 25(3), 594–600.
https://doi.org/10.15407/fm25.03.594
Goronovskiy, I. T., Nazarenko, Yu. P., Nekryach, E. F. (1987). Short handbook on chemistry. Kiev : Naukova dumka [In Russian].
Cesium iodide of extra pure quality for single crystals / Technical conditions TU U24.13.31331736 – 002 – 2004, 2004.
Ryznar, J. W., Green, J., Winterstein, M. G. (1946). Determination of the pH of saturation of magnesium hydroxide. Ind. Eng. Chem., 38(10), 1057–1061.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Copyright Notice Authors published in the journal “Science and Innovation” agree to the following conditions: Authors retain copyright and grant the journal the right of first publication. Authors may enter into separate, additional contractual agreements for non-exclusive distribution of the version of their work (article) published in the journal “Science and Innovation” (for example, place it in an institutional repository or publish in their book), while confirming its initial publication in the journal “Science and innovation.” Authors are allowed to place their work on the Internet (for example, in institutional repositories or on their website).
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.