DEVELOPMENT OF TECHNOLOGY AND CREATION OF TEST EQUIPMENT FOR PRESSURE WELDING OF HIGH-LOAD THIN-WALLED HETEROGENEOUS STEEL TUBULAR PARTS
DOI:
https://doi.org/10.15407/scine17.04.003Keywords:
high-load thin-walled tubular parts, press welding by magnetically controlled arc, welding technology, formation of welded joints.Abstract
Introduction. Magnetically impelled arc butt welding (MIAB) method differs from the existing arc methods by high productivity, stable quality of welded joints, high degree of mechanization and automation of the technological process and so on. Welding is performed automatically, which significantly reduces the influence of the
operator-welder on the quality of welded joints. The optimal values of the magnetic field induction components for thin-walled tubular parts with a diameter of 212 mm are determined. The basic technological parameters on welding of tubular details in stationary conditions are defined, it is: qualitative preparation of end faces of pipes;
optimal distribution of induction of the control magnetic field (CMF); arc voltage; the magnitude and order of programming the welding current; the rate of closure of the arc gap in the process of upset. The influence of liquid metal melt in the arc gap during upset on the formation of welded joints of pipes is determined. Metallographic
studies showed no defects in the weld line and a relatively small area of thermal impact. Mechanical properties of welded joints at the level of mechanical properties of the base metal. Studies have been conducted to determine the
parameters that affect the stable movement of the arc along the thin-walled edges of tubular parts and the influence of liquid metal melt in the arc gap during heating on the formation of welded joints.
Problem Statement. Pipes of small diameters (up to 220 mm) are used in various industrial enterprises and construction of pipelines. The work requires high-performance automatic welding methods that allow obtaining stable and reliable welded joints.
Purpose. The purpose is to raise labor productivity and to save materials by using equipment and technology for press welding of magnetically controlled arc of thin-walled tubular parts.
Materials and Methods. Steel thin-walled tubular parts with a diameter of 42mm and 212 mm, with a wall thickness of 2.5… 3 mm were used for research on press welding. To create a control magnetic field, magnetic systems for tubular parts with a diameter of 212 mm were developed. Experimental welding was performed and
samples of welded joints of pipes with a diameter of 212 mm with a wall thickness of 3 mm were investigated. In the course of the research, the main parameters are recorded and the welding process is controlled by computer.
References
Kuchuk-Yatsenko, S. I., Rudenko, P. M., Gavrish, V. S., Didkovsky, A. V., Antipin, E. V. (2019). Control system for contact
welding by fusion of rails in stationary and field conditions to increase the resource and reliability of railways. Technical
diagnostics and non-destructive testin, 2, 41—50 [in Russian].
Kuchuk-Yatsenko, S. I., Rudenko, P. M., Gavrish, V. S., Didkovsky, A. V., Shvets, V. I., Antipin, E. V., Wojtas, P., Kozlowski, A. (2017). Real-time operational control in information management system for flash-butt welding of rails. Mining
informatics automation and electrical engineering, 1, 35—42.
Kuchuk-Yatsenko, S. I., Rudenko, P. M., Gavrish, V. S., Didkovsky, O. V., Antipin, E. V. (2016). Statistical control of the
process of contact butt welding of rails. Two-level control system. Automatic welding, 5—6, 17—20 [in Russian].
Рatent of Ukraine No. 116490. Kuchuk-Yatsenko S. I., Kachynskyi V. S, Galahov M. V., Koval M. P., Klimenko V. I. Machine for press welding of pipes [in Ukrainian].
Рatent of Ukraine No. 36136339. Kuchuk-Yatsenko S. I., Kachynskyi V. S., Galahov M. V., Klimenko V. I., Koval M. P. Machine for press welding of pipes and pipe ends heated by an arc controlled by a magnetic field [in Ukrainian].
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Copyright Notice Authors published in the journal “Science and Innovation” agree to the following conditions: Authors retain copyright and grant the journal the right of first publication. Authors may enter into separate, additional contractual agreements for non-exclusive distribution of the version of their work (article) published in the journal “Science and Innovation” (for example, place it in an institutional repository or publish in their book), while confirming its initial publication in the journal “Science and innovation.” Authors are allowed to place their work on the Internet (for example, in institutional repositories or on their website).

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.