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INFLUENCE OF THE END BODY DYNAMICS
ON STABILIZATION PROCESSES IN THE RELATIVE
MOTION OF A SPACE TETHERED SYSTEM
STABILIZED BY ROTATION

Introduction. Space tethered systems (STS) stabilized by rotation is a quite interesting and promising direction in the
field of cosmonautics. Such systems are intended for solving a wide range of scientific and research tasks, in particular,
those that cannot be solved effectively with the help of the existing space technologies, for example, transport operations,
creation of artificial gravity, removal of space debris objects, obtainment of experimental data of functioning tethered
systems, etc.

Problem Statement. The peculiarities of the STS dynamics models are determined by the specifics of the problems
solved by such systems actual among which is the researches the effects of the end body dynamics on the system motion.

Purpose. To build a mathematical model of the STS dynamics for considering the general regularities of the system
motion and to analyze comprehensively the special features of the end body dynamics.

Materials and Methods. The mathematical model of the STS dynamics has been built based on the methods and
principles of theoretical mechanics and space flight dynamics. To study the STS dynamics, methods of the theory of
oscillations, analytical and numerical integration of differential motion equations have been used.

Results. The simplest model of the STS dynamics consisting of the material point and the end body connected by a
tether is presented for the motion under consideration. The possibility of the appearance of internal resonances and their
influence on the stabilization processes in the relative motion of the system has been considered.

Conclusions. The proposed model can apply to analyzing the angular oscillation of the end body relative to the tether
attachment point, taking into account the effects of the inertial characteristics of the end body, the tether stiffness and the
angular velocity of the proper rotation of the system. Practical problems related to the STS dynamics may include the
problems of the stability of the end body orientation, resonance modes in the system motion, as well as the problems in
creating the prerequisites for the design of the specific STS.

Keywords: space tethered system, mathematical model, stabilization by rotation, end body, and stabilization processes.

The space tethered systems (STS) stabilized However, to study the rotating STS taking in-
by rotation is a quite interesting and promising | to account dynamics of end bodies is a compli-
direction in the field of cosmonautics. Such sys- | cated problem of spaceflight dynamics. For the
tems are intended for solving a wide range of sci- | time being, this problem has not been sufficiently
entific and research tasks (in particular, for sol- | studied and the current knowledge does not en-
ving tasks that cannot be solved or solved inef- | able to set a well-grounded opinion about realiza-
fectively with the help of the existing space tech- | bility of existing projects. Successful solution of
nologies) [1—4]. this problem related to creating research methods
and respective mathematical dynamics models as
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Fig. 1. Model of the STS motion

well as analysis and definition of the main pat-
terns of motion will create necessary precondi-
tions for planning and developing definite STS
projects. So, in the case of some tasks [5, 6] the
creation of STS presupposes compliance with
program requirements concerning accuracy of
motion orientation of the system end bodies. Ear-
lier [7], a mathematical model of dynamics rota-
ting STS of two end bodies has been proposed.
The analysis of dynamics of the considered STS
with identical end bodies has shown a possibility
of nonlinear resonances causing a significant in-
fluence on the dynamics of system end bodies in
transient modes of motion. It has been demon-
strated that a long-period energy transfer from
one body to another takes place in the system [8].
And that is why, one of relevant problems of ro-
tating STS dynamics is to study influence caused
by dynamics of end bodies on the process of sys-
tem motion (in particular, this includes study of
interaction between oscillations of STS end bo-
dies and self-rotation of the system).

In this research the simplest model of system
dynamics for assessment of influence caused by
end body dynamics on motion of the rotating
STS has been presented. Simplicity of this model
will give an opportunity to carry out a qualitative
analysis of the end body motion relative to the
tether attachment point, to take into account the
influence of end body inertial characteristics and
tether stiffness, and to assess the possibility of
resonances in the system motion.

One end of the tether (material point A) is as-
sumed to move on unperturbed Keplerian orbit,

with the other end of the tether attached to an
absolutely rigid body (Fig. 1).

The tether-body system is boosted to have a
spin motion around the point A with an angular
velocity significantly exceeding that of orbital
motion. The connecting tether is sufficiently
lightweight and in the research mode of motion it
is sufficiently tensioned (i.e. the tether may be
viewed as an elastic weightless connection). Ener-
gy dissipation of the system motion is performed
only by means of internal friction in the elastic
tether. The system is assumed to move in a New-
tonian force field and there are no other external
impacts. It is also presupposed that the system
moves only in the orbital plane.

MOTION EQUATIONS
OF THE SYSTEM

The motion equations of the considered system
are as follows:

D o— HRA
R~ —£24,
A RAS
=5 R m -
m R, = — B Rif ~—F, (1)
Z1 = ]\ngv,i o ‘3111 X Er’

where R ,, R, are radius vectors directed outward
the Newtonian attracting center towards point
A; m, is mass of end body 1; F, is tether tension
force; L, is kinematics momentum of body motion
relative to its own center of mass; p,, is radius
vector directed from the body center of mass to
the point of body attachment to the tether; M,
is the Newtonian force field momentum acting on
the system body; p is the gravitational constant.

The influence caused by tether tension force F,
and gravitational momentum of forces M ,,,, on
the body 1 is assumed to be defined by formulas
analogous to those presented in [7].

ACTING FORCE AND MOMENTUM

The tether elastic properties are described by
Hook’s law and the energy dissipation in the
tether material is expressed using the formulas of
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the equivalent viscous friction:

Er:—Cr[(rl d) nﬁ 5, 8=
7 "

1,r,>d,
0,r,<d,

where 7;1is vector directed from the material point
A to the attachment point of the end body 1 (at-
tachment to the tether); 7, = |, d is nominal length
of the tether; c is stiffness coefficient of the tether;
y is damping coefficient [9].

Momentum of gravitational forces acting on
the end body of the system is described by the
following formula:

- T .
M, 1 = BR_13€R1 *Jir,»
where J, is inertia tensor of the end body 1; Cp, 1
unit vector R, .

Based on (1), the equation of relative motion
(the center-of-mass motion equation of the end
body relative to point A) has been obtained:

R R .
P;gia P;Qs —F,/m,. (2)
Presupposing that the end body has a spherical

shape, the equation of end body motion relative
to its center of mass can be written as

Jy &y ==y, < E, )

where o, is vector of absolutely angular velocity
of the end body motion.
In (2), let us expand ¥ into a( R)power series

F=R,—R,=|—

neglecting the higher order terms. The symbol
R = R, is introduced for convenience and simpli-
city. As far as ris hundreds meters and R~ 7021 km,

the value has an order of 10-% and therefore,

(%)
may be neglected.

Taking into account that RL? = % (1 —3(€g, é,)ﬁr),

the equation for # may be presented as follows:
F= b 316, (65 6) — 1€] — E,/m,, (4)

where €, is unit vector of the R; ¢ is unit vector of
the 7.

KINEMATICS OF THE SYSTEM

To study the motion of the considerable system
let us introduce right-handed coordinate systems
similar to [7], Fig. 4.
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OX,Y,Z, is inertial coordinate system (ICS)
with the origin in the center of the Earth O. OX,
is directed to the vernal equinox; OZ, is directed
along the Earth rotational axis;

OX )Y Z is orbital coordinate system (OCS)
with the origin in point O, coinciding with the
center of mass of the system (with point A). O X,
is directed along the radius vector connecting the
center of mass of the system with the Earth’s cen-
ter 0,Y, in the plane of instantaneous orbit to-
wards the motion of system center of mass;

O X Y Z_ is moving coordinate system related
with the STS body motion plane (CCS) with the
origin in the O, coinciding with point A. O X is
directed from O, to the center of mass of the end
body 1, O,Z_is axis of instant rotation of the vec-
tor directed from O, to the center of mass of end
body 1;

O,x,y,z, is coordinate system related to the end
body (BCS) with the origin in the center of mass
O, of the end body (Fig. 2). The axis coincides
with the principal central axis of inertia of the body.

In accordance with the task set, the system
center of mass is assumed to move on the Keple-
rian orbit, only in the plane of the orbit. In this
case, the mutual orientation of coordinate sys-
tems can be described as (Fig. 2): O X,Y,Z and
OX,Y,Z, are Euler angles (true anomaly angle v),
(v = o,t, o, is angular velocity of the center of

_NpR

2
and O, X,Y,Z are Euler angles (pure rotation ang-
le ¢"); Ox,y,2, and O, X Y Z are Krylow angles
(yaw angle w,).

MOTION EQUATIONS OF IN THE SCALAR FORM

For the purpose of numerical investigations
concerning the end body dynamics in the rota-
tional motion of the system let us develop for-
mulas for 7 and o, in the projections on the CCS
axis.

Vector 7 may be presented as 7= re, .

Having differentiated 7on time, we receive the
formulas for definition of 7, 7:

r=re troey,
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Fig. 2. Mutual orientation of coordinate systems

where ¢y is unit vector of the axis Y.
F=(F =106+ (19 + 2ip)e, )
where ¢ is angular velocity of CCS relative to ICS

(0, = ¢, 9=Vv+¢).
Let’s write expressions for
on the CCS axis as

F, in the projections

7(() ( / d) 7’(°) O 7’1 < d
Fye, =8|c=—— x| 8=\ 1 >4, (6)
where # = 771
z

Proceedlng from the geometry of the system
(Fig. 2)

N Py

Having differentiated 7, on time we receive:

n=7rt Py,
where p,, =@, X p,,.

The orientation of body 1 in CCS can be con-
veniently provided by means of radius vector p,,
and angle o (Fig. 2).

In accordance with [8], the orientation of ra-
dius vector pj, = —p,, (directed from the point of
end body attachment (to the tether) to the cen-
ter of mass of the end body 1) in the CCS is deter-
mined by two angles a.,, B, (Fig. 3):

a, is angle between p;, and the axis O_X ;

B, is angle between the projection of the radius
vector p;, — P—p; on the plane O X Y_and the axis
O X, respectively.

18

Fig. 3. Orientation of radius vector p;, in CCS

In this case orientation of p,, in CCS is defined
by means of a column of direction cosines of the
unit vector e( )

Pin
_(¢)
p1n

1n
_(©
where e, ~—ecosa—ey sina.
In pI‘OJeCtIOIlS on CCS axis the expression for
p,, shall be presented as

—(0)
p1n
©

where e, is unit vector of the axis O,Y, in pro-
jections on CCS axis, é,(:) = — e sina + ey cosa.
7 c

lpin é;j))

In a similar way, 7, 7 in the projections on CCS
axis
=(7

n= G-
The expressions for 7, and 7 included into F, in

(6) can be easily received by means of permuting
(adding) 7,and 7, to them

7, — Py, c050 ) e — f)msmaéyc,

®,p,,Sina) e+ (r¢ + o,p,,cosa)ey .

=~r2 — 2rp,,cosa + p?,,

P (r — 7p,,sina (o,

— py,C05a) —9)

rl \/ 9 2 + 2
re — 4rp, CoSsa T Pi,

Momentum of the tether tension force, M, =
= —p,, * E, in the projections on CCS axes is

22
—«) P1 rsina
M7= 5 F,e;

where €, is unit vector of the axis 0,Z, .
[
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Let us write down the right side of the equa-
tion (4) in the projections on CCS axes.

Let us present ¢, in the projections on CCS
axes. The transition from OCS to CCS is presen-
ted in Fig, 2.

()—ecoscp — ey sing.

Having been transformed, the expression for

7 in (6) is presented as

2

f= 7{(3cos’ ' — 1) e — +-sin2¢' ey]

7 7,1 [(r — Py, CO8QL) € —p,, sina eyﬂ]- (7)
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Fig. 7. Change of angle o (3 = 0.1)

As aresult of substitution of (7) in (5) and pro-
jecting the obtained expression on CCS axis we
shall receive

(r — Py, COSQ),

> E ©)

Taking into account that ®, = @ €7, and consi-
dering the fact that unit vectors e, and e, CCS
and BCS coincide, (3) can be presented as

1 py,7sina

Jz "

P —r¢? Rsr(?)cos2 o—1)—

o + 2rp = — 3 rsm2(p + sind.

ir
p
m17‘1 in

o, =— F

724

)

where &, =¢ t a .
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So, taking into account (8), (9) the system of
equations (1) has the following form:

F—r =Lt r(3cos? g — 1) — £y (r— p,, cosa),

R mr,
. .. 3 p . , F, )
o + 27rp= ) Frst(p + mﬁr, p,,sina, (10)
. _ 1 py,rsino
R A

The presented STS motion equations (10) give
an opportunity to obtain a closed system of first
order equations with 6 unknown variables.

The possibility of internal resonances in the
system motion and their influence on the pro-
cesses of stabilization of the end body oscillations
of rotating STS with energy dissipation of longi-
tudinal oscillations has been considered. In the
motion of such system, internal resonances may
occur when the following frequencies are com-
mensurate: the orbital motion of the system cen-
ter of mass, the spin motion of STS around its
own center of mass (point A), changing distance
between the ends of the tether (longitudinal os-
cillations), and free (angular) oscillations of the
end body.

It is obvious that the possible frequency reso-
nance between the longitudinal oscillations of
the tether and the angular oscillations of the end
body is of the greatest interest. Conditions of res-
onant motions between longitudinal oscillations
of the tether and angular oscillations of the end
body are determined analytically on the basis of
expressions presented in [10]. In this case, when
the STS moves in the orbital plane, the internal
resonance of the cosidered oscillations will be ob-

Characteristics of the STS

Characteristics of the tether

Nominal length d=50m
Stiffness c=732H
Equilibrium length 7,=50.83 m

Inertial characteristics of the end body
Mass m; =24 kg
Coordinates p,, in projections pr, = [2.165 m; 0; 0]
on the axis BCS
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served near the following values of the system
characteristics (see Table).

The stabilization process of angular oscilla-
tions of the end body in the resonant commensu-
rability with longitudinal oscillations of the tet-
her has been numerically estimated taking into
account the influence of longitudinal oscillations
damping. In Figs. 4—7, there are presented sche-
dules of longitudinal oscillations of the tether
(change of length — 7, m) and schedules of angu-
lar oscillations of the end body (change of angle
a, grad) in time at V = 8 periods (turns) of STS

ou

I0)
motion in orbit |V = 5
T

T, Tis time interval, s |.

Based on the obtained results it is possible to
make comparative estimations of the influence of
damping coefficient of longitudinal oscillations ()
on the stabilization of angular oscillations of the
end body. The estimates have been done for val-
ues y equal to 0.01 and 0.1 kg/s. The data values
x are chosen because of the following reasons [9]:
+ for various structural materials of the tether,

the characteristic value is x ~ 0.01 kg/s;

+ more energy losses are caused by friction bet-
ween the tangential details of special damping
devices — structural damping, for which the
characteristic value is y ~ 0.1 kg/s.

Figs. 4—7 show that for fast damping of angu-
lar oscillations of the end body, it is necessary to
ensure their strong connection with longitudi-
nal oscillations of the tether and, accordingly,
the intensive transfer of energy to longitudinal
oscillations. As can be seen from Figs. 6, 7, the de-
pendence of logarithmic decrement of longitudi-

nal oscillations & = %Tk on the coefficient of dam-

ping x = 0.1 kg/s provides the optimum in the
rate of damping of the end body oscillations. Un-
der such y, the amplitude of longitudinal oscilla-
tions and angular oscillations of the end body
"radically” decreases in one period of the STS
motion in orbit.

Thus, controlling the tensile strength of the
tether or using a longitudinal damper in the reso-
nant setting is an effective means of extinguish-
ing angular oscillations of the end body.

ISSN 2409-9066. Sci. innov., 2019, 15(2)
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CONCLUSION

Hence, the simplest mathematical model of dy-
namics of the rotating STS that consists a mate-
rial point and an end body connected with an
elastic weightless tether has been presented. This
model gives an opportunity to carry out analysis
of the end body motion relative to the tether at-
tachment point. The possibility of internal reso-

fluence on the processes of stabilization of the end
body oscillations with the energy dissipation of
longitudinal oscillations has been considered. In
the resonant modes, damping of longitudinal os-
cillations by several orders of magnitude has been
shown to reduce the amplitude of longitudinal
oscillations and angular oscillations of the end
body and, respectively, the duration of the stabi-

nances in the rotating STS motion and their in- Hzation processes n relative motion Of the STS.
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Incruryt rexniunoi Mmexaniku Hanionanbnoi akazeMii Hayk YKpainu
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BIIJIUB JINHAMIKHM KIHITEBOTO TIJIA HA ITPOILECU CTABIJII3AIIIT
Y BIITHOCHOMY PYCI KOCMIYHOI TPOCOBOI CUCTEMU,
CTABLJII3OBAHOI OBEPTAHHIM

Beryn. Bukopucratus kocmiuaux tpocosux cucreM (KTC), crabinizoBanux o6epTaHHIM, € I0CUTh HOBUM i Mepc-
TeKTUBHUM HAIPSIMKOM B Tasly3i cy4acHOI KOCMOHABTHKH. Taki cucTeMu NMpuU3HAYeHi /s BUPINIEHHS IHPOKOTO KoJja
HAYKOBUX Ta [OCJIHUIbKUX 3aBJaHb, 30KPEMA TUX, IKI HEMOKJINBO a0 HeeeKTUBHO BUPIITYBaTU 3a J0TIOMOTOK) HasB-
HUX 32C00IB KOCMIYHOI TeXHIKM, HAIPUKJIA JIs TPAHCIIOPTHUX OIepalliil, CTBOPEHHs MITYYHOI TpaBitaliii, BigBeaeHHs
00’€KTiB KOCMIYHOTO CMITTSI, OTPUMAHHSI €KCIIEPUMEHTAIBHUX TaHUX (DYHKI[IOHYBAHHSI TPOCOBUX CHCTEM TOIIIO.

IIpoGaematuka. Ocobausocti mozeseit aunamiku KTC symosieni crienndikoio po3s’sa3yBaHUX TaKUMU CHCTEMaMU
3aBJIaHb, AKTYAJIBHUM cepe]l IKHUX € JOCTI/PKeHHS BIUTUBY AMHAMIKN KiHIIEBOTO Tijla HA PyX CUCTEMHU.

Mera. [ToGynoBa maremaruunoi mozesi aunamikun KTC, ska 103BOJIUTH PO3IJISIHYTU 3arajibHi 3aKOHOMIPHOCTI PyXy
CUCTEMU Ta BUKOHATH aHasli3 0COOIUBOCTEN AUHAMIKY KiHI[EBOTO TiJa.
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Marepiasm it metoau. [To6ymoBa MmatemaTianoi mosesi anmramikn KTC 6a3y€TbCH Ha MeTO/IaX i MPUHIIATIAX TeOPeTHY-
HOI MeXaHiKW, MeTo/[aX AUHAMiKku KocMiuHoro momboTy. s mocmimkenns nunamikn KTC Bukopucrano metomau Teopii
KOJINBaHb, METO/IU AHAJITUYHOTO Ta YUCEJBHOTO iHTErpyBaHHs [u(epeHIliiHuX piBHIHb PYXY.

Pesyabratu. Hagesieno naiinpoctinty st gocaijpkyBanoro pyxy mogedns aunamikn KTC, 1o ckiazaerses 3 mare-
piasbHOI TOYKH I KIHIIEBOTO Tifa, 3'€/HAHNX HUTKOI0. PO3IJISANyTO MOKJINBICTD BUHUKHEHHS BHYTPIIIHIX PE30HAHCIB Ta 1X
BILIMB Ha 1porecy crabinisaiii y BiIHOCHOMY pycCi CUCTEM.

BucHosku. 3arnpornonosana mozenb auHamiku KTC no3Bosisie BUKoOHATH aHasli3 KyTOBUX KOJIUBAHb KiHIIEBOTO Tija
Bi/THOCHO TOUKH KPIiIJIEHHS /10 HUTKY 3 BpaXyBaHHSIM BIUIMBY IHEPIIITHUX XapaKTePUCTUK KiHI[EBOTO Tija, JKOPCTKOCTI HUTKHU
11 KYTOBOI MIBUIKOCTI BJIACHOTO O6epTaHHH cuctemn. Jlo TpakTUYHNX MTaHb, TIOB sI3aHNX 3 1i€io 3aaueio nuHamiku KTC,
MO’KHA BiJ[HECTU MUTAHHS CTIHKOCTI Opi€HTAaIlii KiHIIEBOTO TiJIa, MUTAHHS PO PE30HAHCHI PEKUMU B PyCi CUCTEMM, a TAKOXK
[UTAHHS PO CTBOPEHHS HEOOXIIHUX [ePeAyMOB st IpoekTyBaHHst KoHkpeTHux KTC.

Knwouoesi crosa: kocMiuHa TpocoBa CUCTEMa, MaTeMaTUYHA MO/ b, CTabimisallis obepTaHHsIM, KiHIIEBE TiJIO, TPOIECH
crabimizanii.

0.JI. Bonoweniox
WNucruryT texnndyeckoii Mexannku Harmonanbnoi akaeMun HayK YKpanHbl
u TocynapcrBennoro kocmuueckoro arentctsa Yrpauubl (M TM HAHY u T'KAY),
yat. Jlemko-Tlomess, 15, luenp, 49005, Yrpauma,
+380 56 372 0640, +380 56 372 0650, office.itm@nas.gov.ua

BIMAHNE TNHAMJKN KOHIIEBOT'O TEJIA HA ITPOITECCBHI CTABMJIN AT
B OTHOCUTEJIbHOM JIBUKEHNM KOCMUYECKOM TPOCOBOW CUCTEMBI,
CTABMJIN3NPOBAHHOM BPAIIIEHUEM

Beenenmne. Vcnonb3oBanne KocMudecknx TpocoBbix cucreM (KTC), cTabuamanpoBanHbIX BpallleHUEM, sTBJISETCS
JIOCTATOYHO HOBBIM U [IEPCIEKTUBHBIM HAIIPaBJIEHUEM B 00JIACTU COBPEMEHHOI KOCMOHABTUKY. Takue cucreMbl pejHasHa-
YEHBI JIJISE PENIeHUs IMPOKOTO KPyTa HAYYHBIX M MUCCJIE/I0BATEIbCKUX 33/1a4, B YACTHOCTH, T€X, KOTOPbIE HEBO3MOKHO WJIH
Hea(hdEKTUBHO PeNIaTh ¢ MOMOIIBIO UMEIOIIUXCS CPEACTB KOCMUUYECKON TEXHUKH, HATIPUMED JIJIsl TPAHCIIOPTHBIX OTIepaIlni,
CO3JIAaHUST UCKYCCTBEHHOW IPaBUTAIMH, YBOAA 00BEKTOB KOCMHYECKOTO MYCOPa, MOJIYYEHHUs] SKCIIEPUMEHTATIbHBIX JAHHBIX
(byHKIIMOHMPOBAHNS TPOCOBBIX CUCTEM U T. [I.

IIpo6aemaTuka. OcoberHoctu Mozesneit auHamuk KTC o0yciioBietbt crieninuKoi peaeMblX TAKUMU CUCTEMAMU
3a/1a4, aKTyaJIbHBIMU CPE/IN KOTOPBIX SIBJISIFOTCS] UCCJIE/I0OBAHNST BJMSHUS ITHAMUKN KOHIIEBOTO TeJIa Ha JIBUKEHUE CUCTEMBI.

Ilean. [Toctpoenne maTemarudeckoii mojenu puHamuku KTC, koTopas 03BOJUT PACCMOTPETh 001IIHE 3aKOHOMEPHOC-
TH JIBUSKEHUS CUCTEMBbI ¥ BBITIOJHUTD AHAJIM3 0COOEHHOCTEN ANHAMUKY KOHIIEBOTO TeJIa.

Marepuasst u Metopl. [locTpoetue maremaruueckoil Mozenu aunamuku KTC Gazupyercs Ha METOax U NPUHIIUIIAX
TEOPETUYECKOI MEXaHUKHU, METO/[AX JIMHAMUKN KOCMU4ecKoro nosera. st ucciepnoBanus junamukn KTC ucnosnb3oBanbi
METO/Ibl TEOPUH KOJIeGaHWil, METO/IbI AHAMUTHIECKOTO0 U YUCJIEHHOTO WHTErpupoBanust AnddepeHuaibibiX ypaBHeHUH
JIBUKEHUS.

Pesyasratel. [IpezicraBiiena nmpocreiiinas 71sl UCCIIeAyeMOTo IBMKeHns Mozeab iunamukn KTC, cocrosimas us mare-
PHAJIBHON TOYKU M KOHIIEBOTO TeJIa, COeIMHEHHBIX HUTHIO. PaccMoTpeHa BO3MOKHOCTb BOSHUKHOBEHUSI BHYTPEHHUX PE30-
HAHCOB U UX BJMSIHUE HA IPOIECCHl CTAGUINBAIMN B OTHOCUTEILHOM JIBUKEHUN CUCTEMBI.

BeiBoabt. [Tpemsioxkennas mouenb aunamuku KTC 103BOJIsIET BBIOJIHUTD aHAIN3 YIJIOBBIX KOJeOaHW KOHIIEBOTO
Tesia OTHOCUTEIBbHO TOYKU KPEIJIEHUST K HUTH C YYeTOM BJIMSHUS MHEPIMAIbHBIX XapPAKTePUCTUK KOHIIEBOTO TeJIa, JKeCT-
KOCTU HUTH U YTJIOBOU CKOPOCTU COOCTBEHHOTO BpallleHust ciucTeMbl. K IpakTHuecKuM BOpocam, CBA3aHHBIM € JIaHHON
3astaveit quanamukn KTC, MOKHO OTHECTH BOIIPOCHI YCTOMYMBOCTH OPUEHTAIIMM KOHIIEBOTO TeJla, BOIIPOCHI O PE30HAHC-
HBIX PEKUMAX B JBUKEHUM CUCTEMbI, @ TAKIKE BOIPOCHI O CO3aHUK HEOOXOMMMBIX MPEAOCHIIOK JJIsl IPOEKTUPOBAHIS
konkpernoix KTC.

Knwouesvie cnosa: kocMudeckast TPOCOBAaA CUCTEMA, MaTeMaTU4Y€eCKaA MO/ICJIb, CTa6I/I]II/I3aI.II/IH BpallicHneM, KOHIIEBOE
T€JI0, IIPOIECChI CTa6I/IJII/ISa]_[I/H/I.
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