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Methods and computing program to determine displacements and accelerations of points of the cylindrical shell (adapter)
middle surface under the action of local momentary loads have been developed. Effect of local load on the oscillation
parameters and deformation of the shell (adapter) has been studied by test example. The displacement and acceleration
under the action of local momentary load have been established to be localized in the action points.

The designed methods can apply to initial calculations of the parameters of oscillations and deformations of cylindrical
shell (adapter) structural elements undergoing the action of heavy local momentary loads in the course of operation.
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The stage separation of the launch vehicle and
space equipment using charge-driven piston mech-
anisms and flexible linear shaped charges located in
the appropriate adapters is accompanied with hea-
vy local momentary loads, which can lead to bre-
akdowns. The plastic deformation zones in the sep-
arated elements are known to be comparable with
the thickness of the separated elements, with other
elements of critical equipment operating in the elas-
tic range. This allows us to use the theory of elastic
shells for assessing operational status of these ele-
ments. To this end, it is necessary to determine the
stress distribution and the nature of oscillations oc-
curring in cylindrical adapters under the action of
local momentary loads of high intensity, to formu-
late appropriate boundary problems, to create or to
improve the existing methods and software, to esti-
mate the strain state and accelerations, and to jus-
tify the reliability of the results obtained.
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Methods for solving boundary problems of os-
cillation and stress-strain state of smooth and
ribbed shells on elastic foundation under unsteady
loads using numerical integration methods and fi-
nite differences have been developed in [1, 2].
Software to determine the nature of oscillations
and the stress-strain state of heterogeneous shells
of revolution under distributed momentary loads
has been proposed in [3, 4]. However, they are un-
suitable for evaluating the oscillations and me-
chanical effects of charge-driven piston mecha-
nisms on the adapters, insofar as the existing ver-
sions of the software are not designed for numeri-
cal study of local action of momentary loads on the
mentioned elements. Since the cylindrical adapt-
ers undergo significant local momentary loads
while the stages of launch vehicles and space equip-
ment are separating, it is necessary to identify the
mechanical effect of the separated parts on the op-
erating capacity of space equipment. Given this,
the dynamics of cylindrical shell as adapter under
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the action of local high-intensity pulses generated
by explosions of charge-driven piston mechanisms
will be mathematically simulated. In this regard,
this research has improved the existing methods
for solving the problems of dynamics of shells of
revolution and appropriate software for their use
in the calculation of adapters.

The object of this research is cylindrical adapt-
er, the size and properties of material of which
and conditions of local momentary loads are pro-
vided by Pivdenne Design Office. Therefore, it is
necessary to formulate a respective problem of
adapter dynamics and on the basis of its solution
to conclude on the level of displacements and ac-
celerations and potential emergency situations.

THE STATEMENT OF THE PROBLEM.
BASIC EQUATIONS

Hereafter, the problem of determining the strain
state of closed cylindrical shell (adapter) under
the action of local momentary loads distributed
over its surface is considered. At the ends of the
shell, the boundary conditions of hinge support
are established.

The solution of the problem is based on classical
theory of shells [5] and the energy method. This ap-
proach has been described in detail and used to sol-
ve the problems of dynamic membrane under the
action of axially symmetric momentary load uni-
formly distributed along its length [4]. The variati-
on equation of motion obtained in that research can
be used for the local loads as well. For shell with-
out supports, the variation equation is as follows:

2 on j/ Eh r2q1) Su + (1E22 ) X

X Oy + <1E—22 L, rq,) 5w] dedodi=0, (1)

where
_0%u 1—,uazu 1+,u 0’v.ow 0’u

L —0, "7 5
oz 2 a2 2 acae Mar % an

0*v
00?

_u otu
N2 0800

# (vt S (1 42>

36

03w 8 W 0%v
2 — D)
[( Macran o0s |7
6u [ 83\) ]
= +ov - —w—
SEPY: ae @@ 52 ae 00 17V
2 (84w+2 o'w_, 0'w )_U o*w
oct  “ocr00r 00+ ) %0 or2

Here, E, p,, p are elasticity modulus, density,
and Poisson coefficient of the shell material; «, v,
w are longitudinal, circular, and normal displace-
ments of the shell middle surface; x = &, y
z = r{ are longitudinal, circular, and normal co-
ordinates; t=1¢/Tis dimensionless time; T'= ¢, — ¢,
is certain time interval; 7, ¢, are fixed time points;

h, r, L are thickness, radlus of middle surface and

length of the shell, respectively; a> = h? / (12r?);
_d=uAHpyr N
0, ~ E'I?Z 4y T 9y - 9 (f) 0) “qy, (T)’

q2 = q()2 ' qz (é:' 6) : (_12t (T)v qq = q03 : Q3 (é:; 9) : qM (T)’
gy Gy Gys ar€ maximum values of the external
load components; q,, G, G, are dimensionless
functions describing changes in external load
depending on spatial coordinates; q,,, q,,, G,, are
dimensionlessfunctionsshowingtimedependence
of the load.

In this case the spatial functions are set as sing-
le stages: @ = 1,if &, < &< &, 0, <0< 0, and is
equal to zero q, = 0, in other points of the surface.
£ 6, 0., 0, are coordinates of i-th local load. The
load changes with time as: q (1) = a, + o, T at

<1<1,;q (1) = 0 in other time points; a , a,, are
dimensionless coefficients.

In order to solve the equations (1) the method
of eigen mode expansion is used.

RESEARCH METHODS

The displacements of points of middle surface
are approximated with double trigonometric se-
ries by spatial coordinates

u= Z Z(u1Inl (®cosnb+u? (1)sinnb) cosd &
M N
V= 21 Zo(umn(r)sm nfd +u} (tycosnd)sind &
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where u} (1), uj (1), uj (1) are searched time

functions; d = mar/L.

Having put (2) to (1), differentiated, and inte-
grated by ¢ @ coordinates for independence and
arbitrary character of displacements one can get
the following systems of ordinary non-uniform
differential equations:

(®cosnf + uZ (vsinnd) sind & (2)

3mn

M1M+S1u1=Q1, Mza u+S2u2*Q2.
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Here M !, M2, S!, S? are mass and rigidity ma-
trixes whose elements depend on the shell pa-
rameters and the wave formation parameters m,
n. The superscripts 1, 2 show that when compil-
ing the mass and the rigidity matrixes, the first
(superscript 1) and the second (superscript 2)
summands, respectively, are used in the expres-
sions (2); u', u? are column vector of time func-
tions ' . u',  u', andu?® . u?, . u’, . re-
spectively; Q!, Q? are column vectors obtained
from the integration by spatial coordinates of
external loads.

For applying the eigen mode method [6], at the
first stage, the eigenvalue problem is considered.
Let us find the diagonal matrixes P!, P?, whose
elements are squared eigenvalues (p')% (p*)%
and eigen mode matrixes A', A%, whose elements
are arbitrary eigen mode constants a', , a* .

Further, let us transform the equations (3) re-
ducing them to the normal coordinates and nor-
malizing the eigen mode matrixes with respect to
the mass matrix. In this case, the mass matrixes
in normal coordinates are single matrixes, while
the rigidity matrixes are diagonal matrixes whose
elements are squared eigenvalues (p})?, (p?)? re-
spectively. To the right, there are the elements of
vectors Q! = (A")"Q', Q2 = (A" Q.

As a result instead of the systems (3), one can
get a series of independent equations:

iy (6) + (p))” u}, () = q;,(6);
(0 G2 02,0 = 2,0
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whose number is equal to the number of members
in the series (2).

If the energy dissipation as a result of shell os-
cillations is approximately taken into account ac-
cording to [6], one can get the following equa-
tions instead of (4)

it (6) + 2c! ! (0) + (p)* ul (O) = g, (0);
iiy (1) + 263,12 () + (P} i () = q; (1), (5)

where ¢, =y, p}, ¢, =y, p?are damping constants
by i-th e1gen mode y, are respective damping co-
efficients.

Having obtained solutions of equations (4), (5),
let us come back to the initial system of searched
functions using the expressions

u'=A'u, u?=A%ul

It shouél’d be noted that to solve the problem of
dynamics of smooth hinge-supported cylindrical
shell it is not really necessary to use the method
of eigen mode expansion, inasmuch as the mem-
bers of the series (2) are the eigen modes in the
case of such shell. This research includes verifica-
tion of the method for the case of local momen-
tary loads in order to expand its use over comput-
ing the dynamics of shells with various complica-
tions such as stiffeners, attached weights, elastic
foundations, etc. The shell is assumed to be at rest
before the action of external load.

The solution of equations (5) can be found us-
ing the Duhamel integral [6]. Under the zero ini-
tial conditions, for each i-th mode (superscripts
are not indicated) it is as follows:

u(t) = p— <a +a, (r—%) — e P@T) {[‘11[31 +
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where p, = pV1—y2, B, N B, Vo)

It should be noted that if in (6) it is assumed that
y =0, one can obtain the solution of equations (4).

General multiplier in expressions (6), namely q—gz, is
the solution of static problem. p

To find he acceleration of points of the shell
middle surface let us take the second derivative
from the expressions (6) by variable T and obtain:

(1) = qge’”’(”l) [c,sin p(1-1,) + c,cos py(1-T))]
isvaluet <t<t;
i,(t) =qfe ™ ™ [c,sin py(t-1,) + ¢ co8 py(t-1)] —
—e ) [d_sin p,(1-1,) + d,cos p(1-1,)]
isvaluet >t
wherec,=(1-2y%)b,—2y\N1—y?b,;c, = (1-2)*)b, -
— 2y V12 b; d, = (1-2®) b, — 2y Iy b;

d, = (1-2®) b, + 2y N1-y2 b,; b, af, +
B
AR +_pz_)]; b, = [(x1 toa (11__2py_ )]7
B 2
b, = [a1[31 +a,(B,T, +;2) b, = |a, +a, (rz—Fy) .
EXAMPLE OF COMPUTATION
OF STRAIN STATE PARAMETERS

AND SHELL (ADAPTER) OSCILLATIONS UNDER
THE ACTION OF LOCAL MOMENTARY LOADS

For the smooth cylindrical shell (adapter) with
parameters p = 2.65 - 10° kg/m? E = 0.7 x 10" N/m?
u=0.3;7r=0.185m; L =0.27 m; 2 = 0.0045 m the
bend reflections w and accelerations w of the po-
ints of shell middle surface under the action of the
following loads have been calculated: within time
from zero to 0.007 s the shell undergoes the ac-
tion of two normal (to the middle surface) forces
distributed over the rectangular areas having size
axa=0.034 m x 0.034 m, their centers have the
coordinates &, = &, = 0.2; 6, = n/5 (point 1) and
6, = 197/15 (point 3). Within time 0 < 7 < 0.007
the load does not vary with time: q, = q, = q

max’
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and is equal to zero q, = q, =0 at > 0.007. At time
0.7 <t<0.707 two more forces of the same magni-
tude and direction apply to the shell in the points
with coordinates &, = & = 0.2; 6, = 11m/15 (point
2)and 6, = 9n/5 (point 4).

The calculations are made for keeping the
members in series (2) up to M = 30, N = 40, when
a convergence of the results is achieved. As the
number of members grows the quantitative val-
ues het more accurate, but the behavior of curves
remains the same.

Insofar as for determining the parameters of
strain state of the shell, the Eigen mode expan-
sion method is used, the Table contains the results
of calculation of the lower eigen frequencies:

One can see form the Table that the minimum
frequency is reported for m = 1, n =5 and is equal
to 1132 Hz. The corresponding maximum eigen
period ¢~ 0.00088 s, is significantly less than
time of load action and, moreover, less than time
elapsing between the application of the first and
the second groups of forces. This fact gives reason
for stating that there are no resonance effects as a
result of the action of the above mentioned forces
on the shell.

Fig. 1 shows time dependences of dimension-
less bend deflection in the point of application of
force (solid line) and in the point with coordi-
nates 6 = n/5; & = 0.5 (dashed line). The calcula-
tions are made for time interval £ =0+ 0.01 sat a
pitch of 0.0001 s.

One can see from Fig.1 that the shell displace-
ment reaches maximum magnitude during the ac-
tion of load. After relief, the points of shell middle
surface oscillate about the equilibrium position in
free (unloaded) state. The maximum deflection in

Eigen Frequencies of Shell Oscillations, Hz

n
m
2 3 4 5 6 7 8
1 | 2204 | 1477 | 1139 | 1132 | 1361 | 1733 | 2201
2 | 3641 | 3034 | 2559 | 2294 | 2265 | 2451 | 2804
3 | 4274 | 3955 | 3659 | 3462 | 3411 | 3525 | 3796
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Fig. 1. Time dependence of bend deflections of the shell points
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Fig. 2. Curves of bend deflections of the shell points in cross
sections € = 1/5 (a) and & = 0.5 (b)

point 7 under the action of forces exceeds that
after the relief little bit more than trice.

Fig. 2 features the strain shape of the shell at ti-
me ¢ = 0.0048 s in cross sections 8 = /5 (Fig. 2a)
and ¢ = 0.2 (Fig. 2b). To obtain dimensional bend
deflections of the shell one can use the formula

q,,, (1=v)r*_
"7 Eh
ISSN 2409-9066. Sci. innov. 2016, 12(3)

w. A force pulse of 2.18 N -s corres-
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Fig. 3. Time dependence of acceleration of the shell points

ponds to theload q . _=2.694-10°N/m?acting on
the shell and distributed over the given load areas,
with maximum deflection of the shell surface from
the equilibrium position reaching ~ 0.37-10~* m

Fig. 3 shows the calculated accelerations of
shell middle surface points within time interval
t=0+0.01satapitch of 0.0001 s. The curve on
Fig. 3a describes acceleration in point 7, that on
Fig. 3b shows acceleration in the point with co-
ordinates 6 = n/5; ¢ = 0,5.

The results show that the maximum accelera-
tion is reported in the points of application of ex-
ternal forces at the beginning and at the end of
their action. At other time, the acceleration is
less by almost an order of magnitude. Let us cal-
culate dimensional acceleration by the formula

(1)) |

max

Eh T w. Having made the calculations,
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Fig. 4. Acceleration distribution over the shell surface at the
beginning and at the end of load action

one can get that, for example, at time ¢ = 0 the abso-
lute acceleration of point 7 is equal to w = 2241G,
at time ¢ = 0.007 s it reaches w = 2277G, at time
t = 0.0082 s it is equal to w = 788G, that in the
point with coordinates 6 = n/5; & = 0.5 at time

40

@10

L
Jn L

0 2p/3 4p/3 0

Fig. 5. Acceleration distribution over the shell surface after

relief
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Fig. 6. Time dependence of bend deflections of shell points
under the action of the second pair of forces

t=0.001sisequal tow=396G,at timez=0.0071s
it reaches w = 653G. It should be noted that the
calculated acceleration (except for those in point
7att=0andat = 0.007 s) is close to the expe-
riment data measured after the relief.
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Fig. 7. Time dependence of acceleration of shell points under
the action of the second pair of forces

Fig. 4 feature acceleration distribution over the
shell surface at time ¢ = 0 in the cross section &= 0.2
(Fig. 4a), and at time ¢ = 0.007 s in the cross sec-
tions 0 = n/5 (Fig. 4b) and ¢ = 0.2 (Fig. 4c¢). As
one can see from Figs, the maximum acceleration
of points of shell middle surface at the beginning
and at the end of external load action is localized
in the action points.

At other time, the peak acceleration of points of
shell middle surface appears in various places as
showed in Fig. 5a (¢ =0.2) and in Fig. 56 (¢ =0.5),
att=0.0082s.

Further, time of action of forces applied in
points 2 and 4 (0.7 << 0.707) is considered. Fig. 6
features the time dependences of shell bend de-
flection. The solid curve shows the time depend-
ence of dimensionless bend deflection in the ac-
tion point 2 (6 = 11xn/15; & = 0.2), the dashed

ISSN 2409-9066. Sci. innov. 2016, 12(3)
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curve shows that in the point with coordinates
0 = 11xn/15; £ = 0.5. Like in the case of the first
pair of forces, at 0.7 <7< 0.707 the shell oscillates
around the equilibrium position as a result of the
action. The maximum bend deflection (at a force
pulse of 2.18 n - s) reaches ~ 0.41 - 10~ m. This
value is little bit higher than that under the ac-
tion of the first pair of forces, as a result of inter-
ference of oscillations caused by the action of all
forces. It should be noted that the maximum di-
mensional bend deflection of the shell does not
exceed 1 percent of its thickness, which testifies
to elastic deformation of the shell.

Fig. 7 shows the time dependence of accelera-
tion within 0.6995 < ¢ < 0.708, under the action of
the second pair of forces. Like under the case of
the first pair of forces, the maximum accelerati-
on appears in the action points at the beginning
and at the end of action. The maximum dimensio-
nal acceleration is equal to w = 2097G at t = 0.7 s,
and w=1657G at t = 0.707 s.

CONCLUSIONS

A computation pattern, a method, and a pro-
gram for calculating displacement and accelera-
tion of points of middle surface of the hinge-sup-
ported shell under the action of local momentary
load have been designed for simulating the dy-
namics of cylindrical shell structural elements.
Effect of local load on the oscillation parameters
and deformation of the shell (adapter) has been
studied by test example. The displacement and
acceleration under the action of local momentary
load have been established to be localized in the
action points. The comparison with the experi-
mental data provided by Pivdenne Design Office
has showed that neither large deformations nor
resonance effects that can lead to breakdown are
expected for the given adapter and the type of
mechanical action of charge-driven piston mech-
anisms. At the same time, insofar as the calcu-
lated maximum acceleration exceeds the experi-
mental ones twice, this fact should be taken into
consideration when designing the configuration
of fastenings.
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The designed method can be used for initial
calculations of the parameters of oscillations and
deformations of cylindrical shell (adapter) struc-
tural elements undergoing the action of heavy lo-
cal momentary loads in the course of operation.
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11.3. JIyzosuit ', B.M. Cipenxo?,
IO.B. Crocapenxo’, T.A. Bamymina?

ucruryt mexaniku im. C.I1. Tumotnenka

Hartionanbioi akagemii nayx Yipainu, Kuis

2 lepxxasue mignpuemctso «KB "IliBgenne"s,
JIHITIpOTIETPOBCHK

MATEMATWMYHE MOJAETIOBAHHSA
JANHAMIKN HWITHAPUYHOTO
AIAIITEPA IIIJI AI€10 JIOKAJIBHOT'O
IMITYJIBCHOI'O HABAHTAKEHHA

PospobiieHa MeTojiKa Ta 00YHCIIOBATbHA TPOTPaMa Jist
BU3HAUEHHS TIePeMillleHb i TPUCKOPEHb TOUYOK CEPeNHHO]
MOBEPXHI IMJIIHAPUYHOI 0OOJOHKM — ajanTepa — Mij Ai€o
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JIOKQJIbHUX KOPOTKOYACHMWX HaBaHTakeHb. Ha TectoBomy
TIPUKJIAZI TIPOBEIeH] OCTiIPKeHHS BITUBY JOKAJIBHOTO Ha-
BaHTaKEHHsI Ha [TapaMeTPH KOJIMBaHb i gepopmyBaHHs 060-
nouku. [lokasano, 1o mpu IOKATBHUX 1 KOPOTKOYACHWX Ha-
BAHTAKEHHSIX CITOCTEPITAETHCS JIOKATI3AIlisT MAKCUMATHHITX
mepeMileHb i MPUCKOPEHb B MiCIISIX TIPUKJIQI€HHS 30BHIII-
HIX CHUJL.

PospobiieHa MeToaKa MOsKe OyTU BUKOPUCTAHA IS 110~
nepeHix 06paxyHKIiB apaMeTpiB KOJUBaHb i gedhopMmyBaH-
HS eJIeMEHTIB KOHCTPYKINH y BUTJIS/I TIAIKUX IUTIHAPII-
HUX 000JIOHOK I/ €10 JIOKAJbHUX AMHAMIYHUX HABAHTA-
JKeHb BEJIMKOI IHTEHCUBHOCTI.

Kuawouoei croea: unninapuuna o60J0HKa, ajarnTep, Jo-
KaJIbHE iMITyJTbCHE HaBAHTAXKEHHsI, PO3TIO/IiJ TPUCKOPEHb.

11.3. JIyzoe0ii ', B.H. Cupenxo?,
IO.B. Cxocapenxo', T.Al. bamymuna?

"Nucruryr mexanuku um. C.I1. Tumortienko
HammonanbHoit akagemun Hayk Ykpaunsl, Kues
2Tocymapcreennoe npeatnpusitie «Kb "IOxnoe"»,
[lHenporeTpoBck

MATEMATMYECKOE MOJAEJINPOBAHIE
JANHAMUKU HUJIMHAPUYECKOI'O
AJIATITEPA TTPY IENCTBUM JIOKAJIBHOTO
NMITYJIbCHOTO HATPYKEHUA

Paspaborana METOAMKA U BBIYUCJIUTENbHAS TIPOTPaAMMa
JUUIST OIIpejiesieHNusT TlepeMellleHUH U yCKOPeHU Touek cpe-
MUHHOW TTOBEPXHOCTH TUJINHPUIECKON 000JI0YKN — ajiarl-
Tepa — I0J] IeCTBUEM JIOKAJIbHBIX KPATKOBPEMEHHBIX Ha-
rpy3ok. Ha TecToBOM npumepe IpOBEIEHbI UCCIIEI0BAHM
BJIMSIHUS JIOKQJIBHOTO KPATKOBPEMEHHOTO HArpy’KeHMs Ha
napaMeTpbl Kojebanuii u gepopMuposanus o6om0uku. 11o-
Ka3aHo, U4TO IPU JIOKAJIbHBIX U KPATKOBPEMEHHBIX HATPy3-
Kax MMeeT MeCTO JIOKQJIN3alnugd MaKCUMaJIbHbBIX IlepeMere-
HUW M YCKOPeHMH B MecTax IPUJIOKeHUs] BHENTHUX CHJI.
PaspaboraHHast METOAMKA MOKeT ObITh UCIOJIb30BAHA ISt
[peBAPUTEIbHBIX PACUETOB KOJeOAaHUN U [TapaMeTpoB Jie-
(hopMupoBaHus 2/1eMEHTOB KOHCTPYKIIMIT B BUJE TJIAJKUX
[WJIMHAPUIECKUX 000JI0U€EK TIPY IeHCTBIM JIOKAIbHBIX JIU-
HaMWYECKUX HAarpy3oK 60]1])]].[0[7[ MNHTEHCUBHOCTH.

Kniouesvie crosa: nmmmugapudeckast 060109k, ajar-
Tep, JOKaTbHOE MMITYJIbCHOE HarpysKeHue, pacipesesreHne
YCKOPEHMUH.
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