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Methods and computing program to determine displacements and accelerations of points of the cylindrical shell (adapter) 
middle surface under the action of local momentary loads have been developed. Effect of local load on the oscillation 
parameters and deformation of the shell (adapter) has been studied by test example. The displacement and acceleration 
under the action of local momentary load have been established to be localized in the action points. 

The designed methods can apply to initial calculations of the parameters of oscillations and deformations of cylindrical 
shell (adapter) structural elements undergoing the action of heavy local momentary loads in the course of operation.
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MATHEMATICAL MODELING OF CYLINDRICAL 

ADAPTER DYNAMICS UNDER THE ACTION OF LOCAL 

MOMENTARY LOADS

The stage separation of the launch vehicle and 
space equipment using charge-driven piston mech-
anisms and flexible linear shaped charges located in 
the appropriate adapters is accompanied with hea-
vy local momentary loads, which can lead to bre-
akdowns. The plastic deformation zones in the sep-
arated elements are known to be comparable with 
the thickness of the separated elements, with other 
elements of critical equipment operating in the elas-
tic range. This allows us to use the theory of elastic 
shells for assessing operational status of these ele-
ments. To this end, it is necessary to determine the 
stress distribution and the nature of oscillations oc-
curring in cylindrical adapters under the action of 
local momentary loads of high intensity, to formu-
late appropriate boundary problems, to create or to 
improve the existing methods and software, to esti-
mate the strain state and accelerations, and to jus-
tify the reliability of the results obtained.

Methods for solving boundary problems of os-
cillation and stress-strain state of smooth and 
ribbed shells on elastic foundation under unsteady 
loads using numerical integration methods and fi-
nite differences have been developed in [1, 2]. 
Software to determine the nature of oscillations 
and the stress-strain state of heterogeneous shells 
of revolution under distributed momentary loads 
has been proposed in [3, 4]. However, they are un-
suitable for evaluating the oscillations and me-
chanical effects of charge-driven piston mecha-
nisms on the adapters, insofar as the existing ver-
sions of the software are not designed for numeri-
cal study of local action of momentary loads on the 
mentioned elements. Since the cylindrical adapt-
ers undergo significant local momentary loads 
while the stages of launch vehicles and space equip-
ment are separating, it is necessary to identify the 
mechanical effect of the separated parts on the op-
erating capacity of space equipment. Given this, 
the dynamics of cylindrical shell as adapter under 
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the action of local high-intensity pulses generated 
by explosions of charge-driven piston mechanisms 
will be mathematically simulated. In this regard, 
this research has improved the existing methods 
for solving the problems of dynamics of shells of 
revolution and appropriate software for their use 
in the calculation of adapters.

The object of this research is cylindrical adapt-
er, the size and properties of material of which 
and conditions of local momentary loads are pro-
vided by Pivdenne Design Office. Therefore, it is 
necessary to formulate a respective problem of 
adapter dynamics and on the basis of its solution 
to conclude on the level of displacements and ac-
celerations and potential emergency situations.

THE STATEMENT OF THE PROBLEM. 

BASIC EQUATIONS

Hereafter, the problem of determining the strain 
state of closed cylindrical shell (adapter) under 
the action of local momentary loads distributed 
over its surface is considered. At the ends of the 
shell, the boundary conditions of hinge support 
are established.

The solution of the problem is based on classical 
theory of shells [5] and the energy method. This ap-
proach has been described in detail and used to sol-
ve the problems of dynamic membrane under the 
ac tion of axially symmetric momentary load uni-
formly distributed along its length [4]. The variati-
on equation of motion obtained in that research can 
be used for the local loads as well. For shell with-
out supports, the variation equation is as follows:
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Here, E, ρ0, μ are elasticity modulus, density, 
and Poisson coefficient of the shell material; u, v, 
w are longitudinal, circular, and normal dis pla ce-
ments of the shell middle surface; x = rξ, y = rθ, 
z = rζ are longitudinal, circular, and normal co-
ordinates; τ = t / T is dimensionless time; T = t2 – t1 
is certain time interval; t1, t2 are fixed time points; 
h, r, L are thickness, radius of middle surface and 
length of the shell, respectively; a2 = h2 / (12r 2); 

σ0 = 
       ET 2       

; q1 = q01 ⋅ q1 (ξ, θ) ⋅ q1t (τ); 

q2 = q02 ⋅ q2 (ξ, θ) ⋅ q2t (τ); q3 = q03 ⋅ q3 (ξ, θ) ⋅ q3t (τ); 
q01, q02, q03 are maximum values of the external 
load components; q1, q2, q3 are dimensionless 
functions describing changes in external load 
depending on spatial coordinates; q1t, q2t, q3t are 
dimensionless functions showing time dependence 
of the load.

In this case the spatial functions are set as sing-
le stages: qi = 1, if ξ1i ≤ ξ≤ ξ2i, θ1i ≤ θ≤ θ2i and is 
equal to zero qi = 0, in other points of the surface. 
ξ1i, ξ2i, θ1i, θ2i are coordinates of i-th local load. The 
load changes with time as: qti(τ) = α1i + α2i τ at 
τ1i ≤ τ≤ τ2i; qti(τ) = 0 in other time points; α1i, α2i are 
dimensionless coefficients.

In order to solve the equations (1) the method 
of eigen mode expansion is used.

RESEARCH METHODS

The displacements of points of middle surface 
are approximated with double trigonometric se-
ries by spatial coordinates
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whose number is equal to the number of members 
in the series (2). 

If the energy dissipation as a result of shell os-
cillations is approximately taken into account ac-
cording to [6], one can get the following equa-
tions instead of (4) 

ü1
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2 u1

g,i(t) = q1
g,i(t);

 ü2
g,i(t) + 2c2

g,i u
.2
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i )
2 u2
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where c1
g,i = γi p

1
i, c

2
g,i = γi p

2
i are damping constants 

by i-th eigen mode, γi are respective damping co-
efficients.
Having obtained solutions of equations (4), (5), 
let us come back to the initial system of searched 
functions using the expressions
 u1 = A1 u1

g, u
2 = A2 u2

g.
It should be noted that to solve the problem of 

dynamics of smooth hinge-supported cylindrical 
shell it is not really necessary to use the method 
of eigen mode expansion, inasmuch as the mem-
bers of the series (2) are the eigen modes in the 
case of such shell. This research includes verifica-
tion of the method for the case of local momen-
tary loads in order to expand its use over comput-
ing the dynamics of shells with various complica-
tions such as stiffeners, attached weights, elastic 
foundations, etc. The shell is assumed to be at rest 
before the action of external load.

The solution of equations (5) can be found us-
ing the Duhamel integral [6]. Under the zero ini-
tial conditions, for each i-th mode (superscripts 
are not indicated) it is as follows:
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where u1
1mn(τ), u1

2mn(τ), u1
3mn(τ) are searched time 

func tions; dm = mπr/L.
Having put (2) to (1), differentiated, and inte-

grated by ξ, θ coordinates for independence and 
arbitrary character of displacements one can get 
the following systems of ordinary non-uniform 
differential equations:
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 ∂τ 2 

 + S1 u1 = Q1,   M 2 
 ∂τ 2 

 + S2 u2 = Q2. (3)

Here M 1, M 2, S1, S2 are mass and rigidity ma-
trixes whose elements depend on the shell pa-
rameters and the wave formation parameters m, 
n. The superscripts 1, 2 show that when compil-
ing the mass and the rigidity matrixes, the first 
(superscript 1) and the second (superscript 2) 
summands, respectively, are used in the expres-
sions (2); u1, u2 are column vector of time func-
tions  u1
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2
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spectively; Q1, Q2 are column vectors obtained 
from the integration by spatial coordinates of 
external loads.

For applying the eigen mode method [6], at the 
first stage, the eigenvalue problem is considered. 
Let us find the diagonal matrixes P1, P2, whose 
elements are squared eigenvalues (p1

k)
2, (p2

k)
2, 

and eigen mode matrixes A1, A2, whose elements 
are arbitrary eigen mode constants a1

k,l, a
2

k,l.
Further, let us transform the equations (3) re-

ducing them to the normal coordinates and nor-
malizing the eigen mode matrixes with respect to 
the mass matrix. In this case, the mass matrixes 
in normal coordinates are single matrixes, while 
the rigidity matrixes are diagonal matrixes whose 
elements are squared eigenvalues (p1

k)
2, (p2

k)
2, re-

spectively. To the right, there are the elements of 
vectors Q1
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As a result, instead of the systems (3), one can 
get a series of independent equations:
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Eigen Frequencies of Shell Oscillations, Hz

m 
n

2 3 4 5 6 7 8

1 2204 1477 1139 1132 1361 1733 2201

2 3641 3034 2559 2294 2265 2451 2804

3 4274 3955 3659 3462 3411 3525 3796

and is equal to zero q1 = q2 =0 at t ≥ 0.007. At time 
0.7 ≤ t < 0.707 two more forces of the same magni-
tude and direction apply to the shell in the points 
with coordinates ξ2 = ξ4 = 0.2; θ2 = 11π/15 (point 
2) and θ4 = 9π/5 (point 4).

The calculations are made for keeping the 
members in series (2) up to M = 30, N = 40, when 
a convergence of the results is achieved. As the 
number of members grows the quantitative val-
ues het more accurate, but the behavior of curves 
remains the same.

Insofar as for determining the parameters of 
strain state of the shell, the Eigen mode expan-
sion method is used, the Table contains the results 
of calculation of the lower eigen frequencies: 

One can see form the Table that the minimum 
frequency is reported for m = 1, n = 5 and is equal 
to 1132 Hz. The corresponding maximum eigen 
period tmax ≈ 0.00088 s, is significantly less than 
time of load action and, moreover, less than time 
elapsing between the application of the first and 
the second groups of forces. This fact gives reason 
for stating that there are no resonance effects as a 
result of the action of the above mentioned forces 
on the shell.

Fig. 1 shows time dependences of dimension-
less bend deflection in the point of application of 
force (solid line) and in the point with coordi-
nates θ = π/5; ξ = 0.5 (dashed line). The calcula-
tions are made for time interval t = 0 ÷ 0.01 s at a 
pitch of 0.0001 s.

One can see from Fig.1 that the shell displace-
ment reaches maximum magnitude during the ac-
tion of load. After relief, the points of shell middle 
surface oscillate about the equilibrium position in 
free (unloaded) state. The maximum deflection in 

+ [α1 + α2 (τ2– p  )] cos pd (τ–τ2)}>, is value τ > τ2

where pd = p√1–γ 2, β1 = 
    γ    

, β2 = 
 1–2γ2 

.

It should be noted that if in (6) it is assumed that 
γ = 0, one can obtain the solution of equations (4). 

General multiplier in expressions (6), namely 
p 2

, is 
the solution of static problem.

To find he acceleration of points of the shell 
middle surface let us take the second derivative 
from the expressions (6) by variable τ and obtain:

üg(τ) = qge
–γp(τ–τ1) [c3sin pd(τ–τ1) + c4cos pd(τ–τ1)] 

is value τ1 ≤ τ ≤ τ2;

üg(τ) = qg{e
–γp(τ–τ1) [c3sin pd(τ–τ1) + c4cos pd(τ–τ1)] –

–e–γp(τ–τ2) [d3sin pd(τ–τ2) + d4cos pd(τ–τ2)] 
is value τ > τ2;

where c3 = (1–2γ2) b1 – 2γ √1–γ 2 b2; c4 = (1–2γ2) b2 –

– 2γ √1–γ 2 b1; d3 = (1–2γ2) b3 – 2γ √1–γ 2 b4; 

d4 = (1–2γ2) b4 + 2γ √1–γ 2 b3; b1 = [α1β1 +

+ α2(β1τ1 +
 p 

)]; b2 = [α1 + α2 (τ1– p  )]; 

b3 = [α1β1 + α2(β1τ2 + p 
)]; b4 = [α1 + α2 (τ2– p  )].

EXAMPLE OF COMPUTATION 

OF STRAIN STATE PARAMETERS 

AND SHELL (ADAPTER) OSCILLATIONS UNDER 

THE ACTION OF LOCAL MOMENTARY LOADS

For the smooth cylindrical shell (adapter) with 
parameters ρ = 2.65 · 103 kg/m3; E = 0.7 × 1011 N/m2; 
μ = 0.3; r = 0.185 m; L = 0.27 m; h = 0.0045 m the 
bend reflections w and accelerations w.. of the po-
ints of shell middle surface under the action of the 
following loads have been calculated: within time 
from zero to 0.007 s the shell undergoes the ac-
tion of two normal (to the middle surface) forces 
distributed over the rectangular areas having size 
a × a = 0.034 m × 0.034 m, their centers have the 
coordinates ξ1 = ξ3 = 0.2; θ1 = π/5 (point 1) and 
θ3 = 19π/15 (point 3). Within time 0 ≤ t < 0.007 
the load does not vary with time: q1 = q2 = qmax, 

2γ

√1–γ 2 √1–γ 2

qg

β2 2γ

β2 2γ
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point 1 under the action of forces exceeds that 
after the relief little bit more than trice.  

Fig. 2 features the strain shape of the shell at ti-
me t = 0.0048 s in cross sections θ = π/5 (Fig. 2а) 
and ξ = 0.2 (Fig. 2b). To obtain dimensional bend 
deflections of the shell one can use the formula 

w = 
         Eh         

 w. A force pulse of 2.18 N · s corres-

ponds to the load qmax = 2.694 · 105 N/m2 acting on 
the shell and distributed over the given load areas, 
with maximum deflection of the shell surface from 
the equilibrium position reaching ~ 0.37 · 10–4 м.

Fig. 3 shows the calculated accelerations of 
shell middle surface points within time interval 
t = 0 ÷ 0.01 s at a pitch of 0.0001 s. The curve on 
Fig. 3а describes acceleration in point 1, that on 
Fig. 3b shows acceleration in the point with co-
ordinates θ = π/5; ξ = 0,5.

The results show that the maximum accelera-
tion is reported in the points of application of ex-
ternal forces at the beginning and at the end of 
their action. At other time, the acceleration is 
less by almost an order of magnitude. Let us cal-
culate dimensional acceleration by the formula 

w.. = 
       Eh T 2      

 w
..

. Having made the calculations, 
qmax (1–v2)r2

Fig. 1. Time dependence of bend deflections of the shell points

Fig. 2. Curves of bend deflections of the shell points in cross 
sections θ = π/5 (а) and ξ = 0.5 (b)

ξ

θ

qmax (1–v2)r2

Fig. 3. Time dependence of acceleration of the shell points

b

b
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Fig. 5. Acceleration distribution over the shell surface after 
relief

Fig. 6. Time dependence of bend deflections of shell points 
under the action of the second pair of forces

θ

θ

one can get that, for example, at time t = 0 the abso-
lute acceleration of point 1 is equal to w.. = 2241G, 
at time t = 0.007 s it reaches w.. = 2277G, at time 
t = 0.0082 s it is equal to w.. = 788G, that in the 
point with coordinates θ = π/5; ξ = 0.5 at time 

t = 0.001 s is equal to w.. = 396G, at time t = 0.0071 s 
it reaches w.. = 653G. It should be noted that the 
calculated acceleration (except for those in point 
1 at t = 0 and at t = 0.007 s) is close to the expe-
riment data measured after the relief. 

Fig. 4. Acceleration distribution over the shell surface at the 
beginning and at the end of load action

ξ

θ

θ

b

b

c
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Fig. 4 feature acceleration distribution over the 
shell surface at time t = 0 in the cross section ξ = 0.2 
(Fig. 4а), and at time t = 0.007 s in the cross sec-
tions θ = π/5 (Fig. 4b) and ξ = 0.2 (Fig. 4c). As 
one can see from Figs, the maximum acceleration 
of points of shell middle surface at the beginning 
and at the end of external load action is localized 
in the action points.

At other time, the peak acceleration of points of 
shell middle surface appears in various places as 
showed in Fig. 5а (ξ = 0.2) and in Fig. 5b (ξ = 0.5), 
at t = 0.0082 s.

Further, time of action of forces applied in 
points 2 and 4 (0.7 ≤ t < 0.707) is considered. Fig. 6 
features the time dependences of shell bend de-
flection. The solid curve shows the time depend-
ence of dimensionless bend deflection in the ac-
tion point 2 (θ = 11π/15; ξ = 0.2), the dashed 

curve shows that in the point with coordinates 
θ = 11π/15; ξ = 0.5. Like in the case of the first 
pair of forces, at 0.7 ≤ t < 0.707 the shell oscillates 
around the equilibrium position as a result of the 
action. The maximum bend deflection (at a force 
pulse of 2.18 n · s) reaches ~ 0.41 · 10–4 m. This 
value is little bit higher than that under the ac-
tion of the first pair of forces, as a result of inter-
ference of oscillations caused by the action of all 
forces. It should be noted that the maximum di-
mensional bend deflection of the shell does not 
exceed 1 percent of its thickness, which testifies 
to elastic deformation of the shell. 

Fig. 7 shows the time dependence of accelera-
tion within 0.6995 ≤ t < 0.708, under the action of 
the second pair of forces. Like under the case of 
the first pair of forces, the maximum accelerati-
on appears in the action points at the beginning 
and at the end of action. The maximum dimensio-
nal acceleration is equal to w.. = 2097G at t = 0.7 s, 
and w.. = 1657G at t = 0.707 s.

CONCLUSIONS

A computation pattern, a method, and a pro-
gram for calculating displacement and accelera-
tion of points of middle surface of the hinge-sup-
ported shell under the action of local momentary 
load have been designed for simulating the dy-
namics of cylindrical shell structural elements. 
Effect of local load on the oscillation parameters 
and deformation of the shell (adapter) has been 
studied by test example. The displacement and 
acceleration under the action of local momentary 
load have been established to be localized in the 
action points. The comparison with the experi-
mental data provided by Pivdenne Design Office 
has showed that neither large deformations nor 
resonance effects that can lead to breakdown are 
expected for the given adapter and the type of 
mechanical action of charge-driven piston mech-
anisms. At the same time, insofar as the calcu-
lated maximum acceleration exceeds the experi-
mental ones twice, this fact should be taken into 
consideration when designing the configuration 
of fastenings.

Fig. 7. Time dependence of acceleration of shell points under 
the action of the second pair of forces 

b
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The designed method can be used for initial 
calculations of the parameters of oscillations and 
deformations of cylindrical shell (adapter) struc-
tural elements undergoing the action of heavy lo-
cal momentary loads in the course of operation.
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МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ 
ДИНАМІКИ ЦИЛІНДРИЧНОГО 

АДАПТЕРА ПІД ДІЄЮ ЛОКАЛЬНОГО 
ІМПУЛЬСНОГО НАВАНТАЖЕННЯ

Розроблена методика та обчислювальна програма для 
визначення переміщень і прискорень точок серединної 
поверхні циліндричної оболонки — адаптера — під дією 

локальних короткочасних навантажень. На тестовому 
прикладі проведені дослідження впливу локального на-
вантаження на параметри коливань і деформування обо-
лонки. Показано, що при локальних і короткочасних на-
вантаженнях спостерігається локалізація максимальних 
переміщень і прискорень в місцях прикладення зовніш-
ніх сил. 

Розроблена методика може бути використана для по-
передніх обрахунків параметрів коливань і деформуван-
ня елементів конструкцій у вигляді гладких циліндрич-
них оболонок під дією локальних динамічних наванта-
жень великої інтенсивності. 

Ключові  слова: циліндрична оболонка, адаптер, ло-
кальне імпульсне навантаження, розподіл прискорень.
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МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ 
ДИНАМИКИ ЦИЛИНДРИЧЕСКОГО 

АДАПТЕРА ПРИ ДЕЙСТВИИ ЛОКАЛЬНОГО 
ИМПУЛЬСНОГО НАГРУЖЕНИЯ

Разработана методика и вычислительная программа 
для определения перемещений и ускорений точек сре-
динной поверхности цилиндрической оболочки — адап-
тера — под действием локальных кратковременных на-
грузок. На тестовом примере проведены исследования 
влияния локального кратковременного нагружения на 
параметры колебаний и деформирования оболочки. По-
казано, что при локальных и кратковременных нагруз-
ках имеет место локализация максимальных перемеще-
ний и ускорений в местах приложения внешних сил. 
Разработанная методика может быть использована для 
предварительных расчетов колебаний и параметров де-
формирования элементов конструкций в виде гладких 
цилиндрических оболочек при действии локальных ди-
намических нагрузок большой интенсивности. 

Ключевые слова: цилиндрическая оболочка, адап-
тер, локальное импульсное нагружение, распределение 
ускорений. 
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