High magnetoelectric effect at room temperature in nanograined ceramics of multiferroic-perovskites with general formula Pb(B′B′′)O3
DOI:
https://doi.org/10.15407/dopovidi2017.12.045Keywords:
magnetoelectric effect, modeling of properties, multiferroics, nanograined ceramicsAbstract
Using the Landau—Ginzburg—Devonshire approach, the theoretical modeling of the magnetoelectric effect in nanograined ceramics of multiferroic-perovskites is carried out. We consider ferromagnetic ferroelectrics Pb(Fe1/2Ta1/2)x(Zr1/2Ti1/2)1-xO3 та Pb(Fe1/2Nb1/2)x(Zr1/2Ti1/2)1-xO3, which have pronounced magneto electric properties at temperatures higher than 100 K, including the high magnetoelectric effect at room temperature. It is shown that the coefficient of magnetoelectric effect can increase by 1–3 orders due to size effects in nanoceramics.
Downloads
References
Scott, J. F. (2012). Applications of magnetoelectrics. J. Mater. Chem., 22, pp. 4567-4574. doi: https://doi.org/10.1039/c2jm16137k
Sanchez, D. A., Ortega, N., Kumar, A., Roque-Malherbe, R., Polanco, R., Scott, J. F. & Katiyar, R. S. (2011). Symmetries and multiferroic properties of novel room-temperature magnetoelectrics: Lead iron tantalate–lead zirconate titanate (PFT/PZT). AIP Adv., 1, 042169. doi: https://doi.org/10.1063/1.3670361
Evans, D. M., Schilling, A., Kumar, A., Sanchez, D., Ortega, N., Arredondo, M., Katiyar, R. S., Gregg, J. M. & Scott, J. F. (2013). Magnetic switching of ferroelectric domains at room temperature in multiferroic PZTFT. Nat. Commun., 4, 1534. doi: https://doi.org/10.1038/ncomms2548
Sanchez, D. A., Ortega, N., Kumar, A., Sreenivasulu, G., Katiyar, R. S., Scott, J. F., Evans, D. M., Arredondo-Arechavala, M., Schilling, A. & Gregg, J. M. (2013). Room-temperature single phase multiferroic magnetoelectrics: Pb(Fe,M)x(Zr,Ti)(1 – x)O3 [M = Ta, Nb]. J. Appl. Phys., 113, 074105. doi: https://doi.org/10.1063/1.4790317
Evans, D. M., Schilling, A., Kumar, A., Sanchez, D., Ortega, N., Katiyar, R. S., Scott, J. F. & Gregg, J. M. (2014). Switching ferroelectric domain configurations using both electric and magnetic fields in Pb(Zr,Ti)O3–Pb(Fe,Ta)O3 single-crystal lamellae. Phil. Trans. R. Soc. A, 372, 20120450. doi: https://doi.org/10.1098/rsta.2012.0450
Mishra, R. K., Choudhary, R. N. P. & Banerjee, A. (2010). Bulk permittivity, low frequency relaxation and the magnetic properties of Pb(Fe1/2Nb1/2)O3 ceramics. J. Phys.: Condens. Matter., 22, Iss. 2, 025901. doi: https://doi.org/10.1088/0953-8984/22/2/025901
Kleemann, W., Shvartsman, V. V., Borisov, P. & Kania, A. (2010). Coexistence of antiferromagnetic and spin cluster glass order in the magnetoelectric relaxor multiferroic PbFe0.5Nb0.5O3. Phys. Rev. Lett., 105, Iss. 25, 257202. doi: https://doi.org/10.1103/PhysRevLett.105.257202
Glinchuk, M. D., Eliseev, E. A. & Morozovska, A. N. (2014). New room temperature multiferroics on the base of single-phase nanostructured perovskites. J. Appl. Phys., 116, 054101. doi: https://doi.org/10.1063/1.4891459
Glinchuk, M. D., Eliseev, E. A. & Morozovska, A. N. (2016). Theoretical description of anomalous proper ties of novel room temperature multiferroics Pb(Fe1/2Ta1/2)x(Zr0.53Ti0.47)1 – xO3 and Pb(Fe1/2Nb1/2)x(Zr0.53Ti0.47)1 – xO3. J. Appl. Phys., 119, 024102. doi: https://doi.org/10.1063/1.4939584
Glinchuk, M. D., Morozovska, A. N., Eliseev, E. A. & Blinc, R. (2009). Misfit strain induced magnetoelectric coupling in thin ferroic films. J. Appl. Phys., 105, 084108. doi: https://doi.org/10.1063/1.3108483
Glinchuk, M. D., Eliseev, E. A., Morozovska, A. N. & Blinc, R. (2008). Giant magnetic effect induced by intrinsic surface stress in ferroic nanorods. Phys. Rev. B, 77, 024106. doi: https://doi.org/10.1103/PhysRevB.77.024106
Eliseev, E. A., Glinchuk, M. D., Khist, V., Skorokhod, V. V., Blinc, R. & Morozovska, A. N. (2011). Linear magnetoelectric coupling and ferroelectricity induced by the flexomagnetic effect in ferroics. Phys. Rev. B, 84, 174112. doi: https://doi.org/10.1103/PhysRevB.84.174112
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.