On the Kiguradze theorem for linear boundary-value problems

Authors

  • V.А. Mikhailets Institute of Mathematics of the NAS of Ukraine, Kiev
  • O.B. Pelekhata NTU of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
  • N.V. Reva NTU of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

DOI:

https://doi.org/10.15407/dopovidi2017.12.008

Keywords:

linear boundary-value problem, passage to the limit, system of ordinary differential equations

Abstract

We investigate the limiting behavior of solutions of inhomogeneous boundary-value problems for the systems of linear ordinary differential equations on a finite interval. A generalization of the Kiguradze theorem (1987) on the passage to the limit is obtained.

Downloads

Download data is not yet available.

References

Reid, W. T. (1967). Some limit theorems for ordinary differential systems. J. Diff. Equat. 3, No. 3, pp. 423-439. doi: https://doi.org/10.1016/0022-0396(67)90042-3

Opial, Z. (1967). Continuous parameter dependence in linear systems of differential equations. J. Diff. Equat. 3, pp. 571-579. doi: https://doi.org/10.1016/0022-0396(67)90017-4

Levin, A. Yu. (1967). Passage to the limit for nonsingular systems X⋅ = An(t)X. Sov. Math. Dokl. 176, No. 4, pp. 774-777.

Levin, A. Yu. (1973). Problems of the theory of ordinary differential equations. I. Vestn. Yaroslav. Univ. Iss. 5, pp. 105-132 (Russian).

Nguyen, Tkhe Hoan. (1993). Dependence of the solutions of a linear system of differential equations on a parameter. Differential Equations. 29, No. 6, pp. 830-835.

Kiguradze, I. T. (1975). Some singular boundary value problems for ordinary differential equations. Tbilisi: Izdat. Tbilis. Univ. (Russian).

Kiguradze, I. T. (1988). Boundary-value problems for systems of ordinary differential equations. J. Soviet Math. 43, No. 2, pp. 2259-2339. doi: https://doi.org/10.1007/BF01100360

Kodliuk, T. I., Mikhailets, V. A. & Reva, N. V. (2013). Limit theorems for one-dimensional boundary-value problems. Ukr. Math. J. 65, No. 1, pp. 77-90. doi: https://doi.org/10.1007/s11253-013-0766-x

Gnyp, E. V., Kodliuk, T. I. & Mikhailets, V. A. (2015). Fredholm boundary-value problems with parameter in Sobolev spaces. Ukr. Math. J. 67, No. 5, pp. 658-667. doi: https://doi.org/10.1007/s11253-015-1105-1

Mikhailets, V. A., Murach, A. A. & Soldatov, V. A. (2016). Continuity in a parameter of solutions to generic boun dary-value problems. Electron. J. Qual. Theory Differ. Equat. No. 87, pp. 1-16. doi: https://doi.org/10.14232/ejqtde.2016.1.87

Published

23.09.2024

How to Cite

Mikhailets, V., Pelekhata, O., & Reva, N. (2024). On the Kiguradze theorem for linear boundary-value problems . Reports of the National Academy of Sciences of Ukraine, (12), 8–13. https://doi.org/10.15407/dopovidi2017.12.008