Meixner polynomials and their properties

Authors

  • V.L. Makarov Institute of Mathematics of the NAS of Ukraine, Kyiv

DOI:

https://doi.org/10.15407/dopovidi2019.07.003

Keywords:

Cayley transformation method, generating function, Green function, Meixner polynomials, recurrent equations

Abstract

A number of properties of a special case of Meixner polynomials given by their generating function are investigated. These polynomials arise when applying the Cayley transformation method to solving the first bounda ryvalue problem for an abstract differential equation of the second order with an unbounded operator coefficient.

Downloads

Download data is not yet available.

References

Meixner, J. (1934). Orthogonale Polynomsysteme mit einer besonderen Gestalt der erzeugenden Funktion. J. London Math. Soc., s1-9, Iss. 1, pp. 6-13. doi: https://doi.org/10.1112/jlms/s1-9.1.6

Szeg’o, G. (1962). Orthogonal polynomials. Moscow: Fizmatlit (in Russian).

Gavrilyuk, I.P. & Makarov, V.L. (2004). Strongly positive operators and numerical algorithms without accuracy saturation. Proceedings of the Institute of Mathematics of the NAS of Ukraine. (Vol. 52). Kyiv (in Russian).

Gavrilyuk, I.P. & Makarov, V.L. (1999). Explicit and approximate solutions of second order differential equations in Hilbert and Banach spaces. Numer. Funct. Anal. Optim., 20, pp. 695-717. doi: https://doi.org/10.1080/01630569908816919

Gavrilyuk, I.P. & Makarov, V.L. (1994). The Cayley transform and the solution of an initial problem for a first order differential equation with an unbounded operator coefficient in Hilbert space. Numer. Funct. Anal. Optim., 15, pp. 583-598. doi: https://doi.org/10.1080/01630569408816582

Li, X. & Chen, C.-P. (2007). Inequalities for the gamma function. J. Ineq. Pure and Appl. Math., 8, Iss. 1, Art. 28, 3 pp.

Fikhtengol’ts, G.M. (1957). The fundamentals of mathematical analysis. (Vol. 2). Moscow: GITTL (in Russian).

Published

21.04.2024

How to Cite

Makarov, V. (2024). Meixner polynomials and their properties . Reports of the National Academy of Sciences of Ukraine, (7), 3–8. https://doi.org/10.15407/dopovidi2019.07.003

Most read articles by the same author(s)