Meixner polynomials and their properties
DOI:
https://doi.org/10.15407/dopovidi2019.07.003Keywords:
Cayley transformation method, generating function, Green function, Meixner polynomials, recurrent equationsAbstract
A number of properties of a special case of Meixner polynomials given by their generating function are investigated. These polynomials arise when applying the Cayley transformation method to solving the first bounda ryvalue problem for an abstract differential equation of the second order with an unbounded operator coefficient.
Downloads
References
Meixner, J. (1934). Orthogonale Polynomsysteme mit einer besonderen Gestalt der erzeugenden Funktion. J. London Math. Soc., s1-9, Iss. 1, pp. 6-13. doi: https://doi.org/10.1112/jlms/s1-9.1.6
Szeg’o, G. (1962). Orthogonal polynomials. Moscow: Fizmatlit (in Russian).
Gavrilyuk, I.P. & Makarov, V.L. (2004). Strongly positive operators and numerical algorithms without accuracy saturation. Proceedings of the Institute of Mathematics of the NAS of Ukraine. (Vol. 52). Kyiv (in Russian).
Gavrilyuk, I.P. & Makarov, V.L. (1999). Explicit and approximate solutions of second order differential equations in Hilbert and Banach spaces. Numer. Funct. Anal. Optim., 20, pp. 695-717. doi: https://doi.org/10.1080/01630569908816919
Gavrilyuk, I.P. & Makarov, V.L. (1994). The Cayley transform and the solution of an initial problem for a first order differential equation with an unbounded operator coefficient in Hilbert space. Numer. Funct. Anal. Optim., 15, pp. 583-598. doi: https://doi.org/10.1080/01630569408816582
Li, X. & Chen, C.-P. (2007). Inequalities for the gamma function. J. Ineq. Pure and Appl. Math., 8, Iss. 1, Art. 28, 3 pp.
Fikhtengol’ts, G.M. (1957). The fundamentals of mathematical analysis. (Vol. 2). Moscow: GITTL (in Russian).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.