Asymptotics of solutions of nonlinear Beltrami equations
DOI:
https://doi.org/10.15407/dopovidi2019.02.017Keywords:
Beltrami equation, mappings of the Sobolev class, nonlinear Beltrami equation, regular homeomorphismAbstract
Regular homeomorphic solutions of the nonlinear Beltrami equation for the power and logarithmic orders of growth are investigated. Solutions showing the accuracy of the growth order in the found estimates are constructed.
Downloads
References
Golberg, A., Salimov, R. & Stefanchuk, M. (2018). Complex Anal. Oper. Theory. doi: https://doi.org/10.1007/s1178501808332
Lavrent’ev, M. A. & Shabat, B. V. (1957). The geometric properties of solutions of nonlinear systems of partial differential equations. Dokl. ÀN SSSR, 112, No. 5, pp. 810811 (in Russian).
Lavrent’ev, M. A. (1947). A general problem of the theory of quasiconformal representation of plane regions. Mat. sbornik, 21, No. 2, pp. 285320 (in Russian).
Lavrent’ev, M. A. (1962). The variational method in boundaryvalue problems for systems of equations of elliptic type. Moscow: Izdvo AN SSSR (in Russian).
Lehto, O. & Virtanen, K. (1973). Quasiconformal Mappings in the Plane. New York: Springer. doi: https://doi.org/10.1007/978-3-642-65513-5
Gutlyanskii, V. Ya., Nesmelova, O. V. & Ryazanov, V. I. (2018). Semilinear equations in the plane with measu rable data. Dopov. Nac. akad. nauk Ukr., No. 2, pp. 1218. doi: https://doi.org/10.15407/dopovidi2018.02.012
Gutlyanskii, V. Ya., Nesmelova, O. V. & Ryazanov, V. I. (2017). On the Dirichlet problem for quasilinear Poisson equations. Pratsi IPPM NAN Ukrainy, 31, No. 2, pp. 2837.
Gutlyanskii, V., Nesmelova, O. & Ryazanov, V. (2017). On quasiconformal maps and semilinear equations in the plane. Ukr. Mat. Visn., 14, No. 2, ðð. 161191.
Gutlyanskii, V., Nesmelova, O. & Ryazanov, V. (June 2018). The Dirichlet problem for semilinear equations. arXiv: 1804.05875v9 [math.CV].
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.