Algebraic theory of measure algebras

Authors

DOI:

https://doi.org/10.15407/dopovidi2023.02.003

Keywords:

measure algebra, locally matrix algebra, Boolean algebra, Hamming spaces, Steinitz number

Abstract

A. Horn and A. Tarski initiated the abstract theory of measure algebras. Independently V. Sushchansky, B. Oliynyk and P. Cameron studied the direct limits of Hamming spaces. In the current paper, we introduce new examples of locally standard measure algebras and complete the classification of countable locally standard measure algebras. Countable unital locally standard measure algebras are in one-to-one correspondence with Steinitz numbers. Given a Steinitz number s such measure algebra is isomorphic to the Boolean algebra of s-periodic sequences of 0 and 1. Nonunital locally standard measure algebras are parametrized by pairs (s, r), where s is a Steinitz number and r is a real number greater or equal to 1. We also show that an arbitrary (not necessarily locally standard) measure algebra is embeddable in a metric ultraproduct of standard Hamming spaces. In other words, an arbitrary measure algebra is sofic.

Downloads

Download data is not yet available.

References

Horn, A. & Tarski, A. (1948). Measures in Boolean algebras. Trans. Amer. Math. Soc., 64, pp. 467-497. https://doi.org/10.2307/1990396

Jech, T. (2008). Algebraic characterizations of measure algebras. Proc. Amer. Math. Soc., 136, pp. 1285-1294.

Maharam, D. (1947). An algebraic characterization of measure algebras. Ann. Math. Ser. 2., 48, pp. 154-167. https://doi.org/10.2307/1969222

Vershik, A. M. (1995). Theory of decreasing sequences of measurable partitions. St. Petersburg Math. J., 6, No. 4, pp. 705-761.

Steinitz, E. (1910). Algebraische Theorie der Körper. J. Reine Angew. Math., 137, pp. 167-309. https://doi.org/10.1515/crll.1910.137.167

Glimm, J. G. (1960). On a certain class of operator algebras. Trans. Amer. Math. Soc., 95, No. 2, pp. 318-340. https://doi.org/10.2307/1993294

Bezushchak, O. & Oliynyk, B. (2020). Primary decompositions of unital locally matrix algebras. Bull. Math. Sci., 10, No. 1. https://doi.org/10.1142/S166436072050006X

Bezushchak, O. & Oliynyk, B. (2020). Unital locally matrix algebras and Steinitz numbers. J. Algebra Appl., 19, No. 9. https://doi.org/10.1142/S0219498820501807

Kurochkin, V. M. (1948). On the theory of locally simple and locally normal algebras. Mat. Sb., Nov. Ser., 22(64), No. 3, pp. 443-454 (in Russian).

Bezushchak, O. & Oliynyk, B. (2021). Hamming spaces and locally matrix algebras. J. Algebra Appl., 20, No. 8. https://doi.org/10.1142/S0219498821501474

Elek, G. & Szabó, E. (2006). On sofic groups. J. Group Theory, 9, No. 2, pp. 161-171. https://doi.org/10.1515/JGT.2006.011

Gromov, M. (1999). Endomorphism of symbolic algebraic varieties. J. Eur. Math. Soc., 1, No. 2, pp. 109-197. https://doi.org/10.1007/PL00011162

Mal’cev, A. I. (1973). Algebraic system. Berlin, Heidelberg: Springer.

Downloads

Published

03.05.2023

How to Cite

Bezushchak, O. ., & Oliynyk, B. . (2023). Algebraic theory of measure algebras. Reports of the National Academy of Sciences of Ukraine, (2), 3–9. https://doi.org/10.15407/dopovidi2023.02.003

Section

Mathematics