Increasing the bearing capacity of ethanol as a component of alternative motor fuel: experiments and molecular modeling

Authors

  • Ye. O. Bozhko Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, Kiev
  • S. O. Yesylevskyy Institute of Physics of the NAS of Ukraine, Kiev
  • Ye. K. Cherniavskyi Institute of Physics of the NAS of Ukraine, Kiev
  • Ye. V. Sheludko Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, Kiev
  • V. S. Piljavsky Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, Kiev
  • Ye. V. Polunkin Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, Kiev
  • Yu. I. Bogomolov Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, Kiev

DOI:

https://doi.org/10.15407/dopovidi2016.02.079

Keywords:

alternative fuel, hydrogen bonds, load-bearing capacity, molecular dynamics, Schiff base, structure formation

Abstract

A Schiff base containing fragments of D-glucose and benzoic acid is synthesized. It is shown that the introduction of this additive into ethyl alcohol — alternative fuels component — significantly (1.7–3.6 times) increases its bearing capacity. The effect of additives on the structure formation in ethanol is studied by the method of complete atomic classical molecular dynamics. Adding the additive to ethanol increases the mixture density and decreases the diffusion coefficient of ethanol. Structuring occurs due to the formation of complexes stabilized by hydrogen bonds, which consist of an additive molecule surrounded by a shell of ∼37 oriented ethanol molecules. Moreover, metastable dimers and trimers of an additive molecule are formed with a lifetime of about 0.5 ns.

Downloads

Download data is not yet available.

References

Kovtun G. A. Visnik NAN Ukraine, 2005, No 2: 19–27 (in Ukrainian ).

Piljavsky V. S., Polunkin E. V., Kameneva T. M. Kataliz i neftehimiâ, 2013, No 22: 37–41(in Russian).

Ellis G. P. Chem. and Ind., 1966: 902– 903.

Hess B., Kutzner C., van der Spoel D., Lindahl E. J. Chem. Theory Comput., 2008, 4, No 3: 435–447. https://doi.org/10.1021/ct700301q

Duan Y., Wu C., Chowdhury S., Lee M. C., Xiong G., Zhang W., Yang R., Cieplak P., Luo R., Lee T., Caldwell J., Wang J., Kollman P. J. Comput. Chem., 2003, 24, No 16: 1999–2012. https://doi.org/10.1002/jcc.10349

Sousa da Silva A. W., Vranken W. F. BMC Research Notes, 2012, 5, No 1: 367. https://doi.org/10.1186/1756-0500-5-367

Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

Bussi G., Donadio D., Parrinello M. J. Chem. Phys. , 2007, 126, N 1: 014101. https://doi.org/10.1063/1.2408420

Berendsen H. J. C., Postma J. P. M., van Gunsteren W. F., DiNola A., Haak J. R. J. Chem. Phys.,1984, 81, No 8: 3684–3690. https://doi.org/10.1063/1.448118

Der Spoel D., Lindahl E., Hess B., Groenhof G., Mark A. E., Berendsen H. J. J. Comput. Chem., 2005, 26, No 16: 1701–1718. https://doi.org/10.1002/jcc.20291

Yesylevskyy S. O. J. Comput. Chem., 2015, 33, No 19: 1632–1636. https://doi.org/10.1002/jcc.22989

Yesylevskyy S. O. J. Comput. Chem., 2015, 36, No 19: 1480–1488. https://doi.org/10.1002/jcc.23943

Published

29.09.2024

How to Cite

Bozhko, Y. O., Yesylevskyy, S. O., Cherniavskyi, Y. K., Sheludko, Y. V., Piljavsky, V. S., Polunkin, Y. V., & Bogomolov, Y. I. (2024). Increasing the bearing capacity of ethanol as a component of alternative motor fuel: experiments and molecular modeling . Reports of the National Academy of Sciences of Ukraine, (2), 79–86. https://doi.org/10.15407/dopovidi2016.02.079