Increasing the bearing capacity of ethanol as a component of alternative motor fuel: experiments and molecular modeling
DOI:
https://doi.org/10.15407/dopovidi2016.02.079Keywords:
alternative fuel, hydrogen bonds, load-bearing capacity, molecular dynamics, Schiff base, structure formationAbstract
A Schiff base containing fragments of D-glucose and benzoic acid is synthesized. It is shown that the introduction of this additive into ethyl alcohol — alternative fuels component — significantly (1.7–3.6 times) increases its bearing capacity. The effect of additives on the structure formation in ethanol is studied by the method of complete atomic classical molecular dynamics. Adding the additive to ethanol increases the mixture density and decreases the diffusion coefficient of ethanol. Structuring occurs due to the formation of complexes stabilized by hydrogen bonds, which consist of an additive molecule surrounded by a shell of ∼37 oriented ethanol molecules. Moreover, metastable dimers and trimers of an additive molecule are formed with a lifetime of about 0.5 ns.
Downloads
References
Kovtun G. A. Visnik NAN Ukraine, 2005, No 2: 19–27 (in Ukrainian ).
Piljavsky V. S., Polunkin E. V., Kameneva T. M. Kataliz i neftehimiâ, 2013, No 22: 37–41(in Russian).
Ellis G. P. Chem. and Ind., 1966: 902– 903.
Hess B., Kutzner C., van der Spoel D., Lindahl E. J. Chem. Theory Comput., 2008, 4, No 3: 435–447. https://doi.org/10.1021/ct700301q
Duan Y., Wu C., Chowdhury S., Lee M. C., Xiong G., Zhang W., Yang R., Cieplak P., Luo R., Lee T., Caldwell J., Wang J., Kollman P. J. Comput. Chem., 2003, 24, No 16: 1999–2012. https://doi.org/10.1002/jcc.10349
Sousa da Silva A. W., Vranken W. F. BMC Research Notes, 2012, 5, No 1: 367. https://doi.org/10.1186/1756-0500-5-367
Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
Bussi G., Donadio D., Parrinello M. J. Chem. Phys. , 2007, 126, N 1: 014101. https://doi.org/10.1063/1.2408420
Berendsen H. J. C., Postma J. P. M., van Gunsteren W. F., DiNola A., Haak J. R. J. Chem. Phys.,1984, 81, No 8: 3684–3690. https://doi.org/10.1063/1.448118
Der Spoel D., Lindahl E., Hess B., Groenhof G., Mark A. E., Berendsen H. J. J. Comput. Chem., 2005, 26, No 16: 1701–1718. https://doi.org/10.1002/jcc.20291
Yesylevskyy S. O. J. Comput. Chem., 2015, 33, No 19: 1632–1636. https://doi.org/10.1002/jcc.22989
Yesylevskyy S. O. J. Comput. Chem., 2015, 36, No 19: 1480–1488. https://doi.org/10.1002/jcc.23943
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.