Prime ends on the Riemann surfaces
DOI:
https://doi.org/10.15407/dopovidi2017.09.020Keywords:
boundary behavior, homeomorphic extension, mappings of finite distortion, prime Carathéodory ends, Riemann surfaces, Sobolev mappingsAbstract
We prove criteria for the homeomorphic extension of mappings with finite distortion between the domains on Riemann surfaces to the boundary by prime Carathéodory ends.
Downloads
References
Kovtonyuk, D., Petkov, I. & Ryazanov, V. (2017). On the Boundary Behavior of Mappings with Finite Distortion in the Plane. Lobachevskii J. Math., 38, No. 2, pp. 290-306. https://doi.org/10.1134/S1995080217020123
Petkov, I. V. (2015). The boundary behavior of homeomorphisms of the class Wloc1,1 on the plane by prime ends. Dopov. Nac. akad. nauk Ukr., No. 6, pp.19-23 (in Russian). https://doi.org/10.15407/dopovidi2015.06.019
Kovtonyuk, D.A. & Ryazanov, V. I. (2016). Prime ends and the Orlicz—Sobolev classes. St.-Petersburg Math. J., 27, No. 5, pp. 765-788. https://doi.org/10.1090/spmj/1416
Ryazanov, V. I. & Volkov, S. V. (2016). On the Boundary Behavior of Mappings in the class Wloc1,1 on Riemann surfaces. Complex Anal. Oper. Theory. doi: https://doi.org/10.1007/s11785-016-0618-4
Afanasieva, E. S., Ryazanov, V. I. & Salimov, R. R. (2012). On mappings in Orlicz—Sobolev classes on Riemannian manifolds. J. Math. Sci., 181, No. 1, pp. 1-17. https://doi.org/10.1007/s10958-012-0672-z
Ryazanov, V. I. & Volkov, S. V. (2015). On the boundary behavior of mappings in the class Wloc1,1 on Riemann surfaces. Trudy Instytuta Prikladnoi Matematiki i Mekhaniki NAN Ukrainy, 29, pp. 34-53.
Ryazanov, V. I. & Volkov, S. V. (2016). On the theory of the boundary behavior of mappings in the Sobolev class on Riemann surfaces. Dopov. Nac. akad. nauk Ukr., No. 10, pp. 5-9 (in Russian). doi: https://doi.org/10.15407/dopovidi2016.10.005
Collingwood, E. F. & Lohwator, A. J. (1966). The Theory of Cluster Sets. Cambridge Tracts in Mathematics and Mathematical Physics, Vol. 56, Cambridge: Cambridge Univ. Press. https://doi.org/10.1017/CBO9780511566134
Ryazanov, V. & Volkov, S. (2017). Prime ends in the mapping theory on Riemann surfaces. ArXiv: 1704.03164v5 [math.CV] 26 Apr 2017.
Ryazanov, V. & Volkov, S. Prime ends in the Sobolev mapping theory on Riemann surfaces. Mat. Studii (to appear).
Ryazanov, V. & Salimov, R. (2007). Weakly flat spaces and boundaries in the mapping theory. Ukr. Math. Bull., 4, No. 2, pp. 199-233.
Martio, O., Ryazanov, V., Srebro, U. & Yakubov, E. (2009). Moduli in Modern Mapping Theory. New York etc.: Springer.
Ryazanov, V., Srebro, U. & Yakubov, E. (2011). On integral conditions in the mapping theory. J. Math. Sci., 173, No. 4, pp. 397-407. https://doi.org/10.1007/s10958-011-0257-2
Kovtonyuk, D. A. & Ryazanov, V. I. (2011). On the boundary behavior of generalized quasi-isometries. J. Anal. Math., 115, pp. 103-119. https://doi.org/10.1007/s11854-011-0025-8
Ryazanov, V. & Sevost'yanov, E. (2011). Equicontinuity of mappings quasiconformal in the mean. Ann. Acad. Sci. Fenn., 36, pp. 231-244. https://doi.org/10.5186/aasfm.2011.3614
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.