Prime ends on the Riemann surfaces

Authors

  • V.I. Ryazanov Institute of Applied Mathematics and Mechanics of the NAS of Ukraine, Slovyansk
  • S.V. Volkov Institute of Applied Mathematics and Mechanics of the NAS of Ukraine, Slovyansk

DOI:

https://doi.org/10.15407/dopovidi2017.09.020

Keywords:

boundary behavior, homeomorphic extension, mappings of finite distortion, prime Carathéodory ends, Riemann surfaces, Sobolev mappings

Abstract

We prove criteria for the homeomorphic extension of mappings with finite distortion between the domains on Riemann surfaces to the boundary by prime Carathéodory ends.

Downloads

Download data is not yet available.

References

Kovtonyuk, D., Petkov, I. & Ryazanov, V. (2017). On the Boundary Behavior of Mappings with Finite Distortion in the Plane. Lobachevskii J. Math., 38, No. 2, pp. 290-306. https://doi.org/10.1134/S1995080217020123

Petkov, I. V. (2015). The boundary behavior of homeomorphisms of the class Wloc1,1 on the plane by prime ends. Dopov. Nac. akad. nauk Ukr., No. 6, pp.19-23 (in Russian). https://doi.org/10.15407/dopovidi2015.06.019

Kovtonyuk, D.A. & Ryazanov, V. I. (2016). Prime ends and the Orlicz—Sobolev classes. St.-Petersburg Math. J., 27, No. 5, pp. 765-788. https://doi.org/10.1090/spmj/1416

Ryazanov, V. I. & Volkov, S. V. (2016). On the Boundary Behavior of Mappings in the class Wloc1,1 on Riemann surfaces. Complex Anal. Oper. Theory. doi: https://doi.org/10.1007/s11785-016-0618-4

Afanasieva, E. S., Ryazanov, V. I. & Salimov, R. R. (2012). On mappings in Orlicz—Sobolev classes on Riemannian manifolds. J. Math. Sci., 181, No. 1, pp. 1-17. https://doi.org/10.1007/s10958-012-0672-z

Ryazanov, V. I. & Volkov, S. V. (2015). On the boundary behavior of mappings in the class Wloc1,1 on Riemann surfaces. Trudy Instytuta Prikladnoi Matematiki i Mekhaniki NAN Ukrainy, 29, pp. 34-53.

Ryazanov, V. I. & Volkov, S. V. (2016). On the theory of the boundary behavior of mappings in the Sobolev class on Riemann surfaces. Dopov. Nac. akad. nauk Ukr., No. 10, pp. 5-9 (in Russian). doi: https://doi.org/10.15407/dopovidi2016.10.005

Collingwood, E. F. & Lohwator, A. J. (1966). The Theory of Cluster Sets. Cambridge Tracts in Mathematics and Mathematical Physics, Vol. 56, Cambridge: Cambridge Univ. Press. https://doi.org/10.1017/CBO9780511566134

Ryazanov, V. & Volkov, S. (2017). Prime ends in the mapping theory on Riemann surfaces. ArXiv: 1704.03164v5 [math.CV] 26 Apr 2017.

Ryazanov, V. & Volkov, S. Prime ends in the Sobolev mapping theory on Riemann surfaces. Mat. Studii (to appear).

Ryazanov, V. & Salimov, R. (2007). Weakly flat spaces and boundaries in the mapping theory. Ukr. Math. Bull., 4, No. 2, pp. 199-233.

Martio, O., Ryazanov, V., Srebro, U. & Yakubov, E. (2009). Moduli in Modern Mapping Theory. New York etc.: Springer.

Ryazanov, V., Srebro, U. & Yakubov, E. (2011). On integral conditions in the mapping theory. J. Math. Sci., 173, No. 4, pp. 397-407. https://doi.org/10.1007/s10958-011-0257-2

Kovtonyuk, D. A. & Ryazanov, V. I. (2011). On the boundary behavior of generalized quasi-isometries. J. Anal. Math., 115, pp. 103-119. https://doi.org/10.1007/s11854-011-0025-8

Ryazanov, V. & Sevost'yanov, E. (2011). Equicontinuity of mappings quasiconformal in the mean. Ann. Acad. Sci. Fenn., 36, pp. 231-244. https://doi.org/10.5186/aasfm.2011.3614

Downloads

Published

17.09.2024

How to Cite

Ryazanov, V., & Volkov, S. (2024). Prime ends on the Riemann surfaces . Reports of the National Academy of Sciences of Ukraine, (9), 20–25. https://doi.org/10.15407/dopovidi2017.09.020

Most read articles by the same author(s)

1 2 3 > >>