Induction of NO synthesis in roots of wheat plantlets and development of their heat resistance by exogenous L-arginine and nitrate

Authors

  • Yu.V. Karpets V.V. Dokuchaev Kharkiv National Agrarian University
  • Yu.E. Kolupaev V.V. Dokuchaev Kharkiv National Agrarian University
  • A.P. Dmitriev Institute of Cell Biology and Genetic Engeneering of the NAS of Ukraine, Kiev

DOI:

https://doi.org/10.15407/dopovidi2017.07.077

Keywords:

heat resistance, L-arginine, nitrate, nitrate reductase, nitric oxide, NO-synthase, Triticum aestivum

Abstract

The treatment of roots of intact plantlets of wheat (Triticum aestivum L.) with L-arginine and sodium nitrate caused an increase of the content of nitric oxide (NO) in them and raised the resistance to the damaging heating. The arginine-dependent increase of the NO content was suppressed by the pretreatment of roots with NO-synthase inhibitor L-NAME (NG-nitro-L-arginine methyl ester), and the nitrate-dependent one — with nitrate reductase inhibitor, sodium tungstate. These inhibitors eliminated also the positive influence of exogenous L-arginine and nitrate on the heat resistance of plantlets that confirms the crosstalk of such influence with the process of nitric oxide synthesis. At the combined treatment of plantlets with L-arginine and nitrate, their influence on the content of nitric oxide in roots and the development of the heat resistance of plantlets was leveled. The oppression of the nitrate-dependent formation of nitric oxide in plantlets roots, caused by L-arginine, was partially removed by NO-synthase inhibitor L-NAME. Thus, the data on the antagonism of the arginine- and nitrate-dependent pathways of nitric oxide synthesis in plant cells are obtained for the first time.

Downloads

References

Dmitriev, A. P. (2004). Sygnal role of nitric oxide in plants. Tsitol. Genet., 38, No. 4, pp. 67-75 (in Russian).

Wilson, I. D., Neill, S. J. & Hancock, J. T. (2008). Nitric oxide synthesis and signalling in plants. Plant Cell Environ., 31, No. 5, pp. 622-631. https://doi.org/10.1111/j.1365-3040.2007.01761.x

Khan, M. N., Mobin, M. & Abbas, Z. K. (2015). Nitric oxide and high temperature stress: a physiological perspective. In Khan, M. N. et al. (Eds.). Nitric oxide action in abiotic stress responses in plants (rr. 77-94). Heidelberg; New York; Dordrecht; London: Springer. doi: https://doi.org/10.1007/978-3-319-17804-2_5

Karpets, Yu. V., Kolupaev, Yu. E. & Vauner, A. A. (2015). Functional interaction between nitric oxide and hydrogen peroxide during formation of wheat seedling induced heat resistance. Russ. J. Plant Physiol., 62, No. 1, pp. 65-70. https://doi.org/10.1134/S1021443714060090

Siddiqui, M. H., Al-Whaibi, M. H. & Basalah, M. O. (2011). Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma, 248, No. 3, pp. 447-455. https://doi.org/10.1007/s00709-010-0206-9

Barand, A., Nasibi, F. & ManouchehriKalantari, Kh. (2015). The effect of arginine pretreatment in the increase of coldtolerance in Pistacia vera L. in vitro. Russ. Agricult. Sci., 41, No. 5, pp. 340-346. https://doi.org/10.3103/S1068367415050043

Mur, L. A. J., Mandon, J., Persijn, S., Cristescu, S. M., Moshkov, I. E., Novikova, G. V., Hall, M. A., Harren, F. J. M., Hebelstrup, K. H. & Gupta, K. J. (2013). Nitric oxide in plants: an assessment of the current state of knowledge. AoB Plants, 5, pls052. https://doi.org/10.1093/aobpla/pls052

Glyan'ko, A. K. & Mitanova, N. B. (2011). Synthesis nitric oxide (NO) in roots etiolated seedlings of pea. Visn. Kharkiv Nat. Agr. Un-ty. Ser. Biol., Iss. 3, pp. 6-14 (in Russian).

Roszer, T. (2014). Biosynthesis of nitric oxide in plants. In Khan, M. N. et al. (Eds.). Nitric Oxide in Plants: Metabolism and Role in Stress Physiology (pp. 17-32). Cham: Springer. https://doi.org/10.1007/978-3-319-06710-0_2

Corpas, F. J. & Barroso, J. B. (2016). Nitric oxide synthase-like activity in higher plants. Nitric Oxide. doi: https://doi.org/10.1016/j.niox.2016.10.009

Crawford, N. M. (2005). Mechanisms for nitric oxide synthesis in plants. J. Exp. Bot., 57, No. 3, pp. 471-478. doi: https://doi.org/10.1093/jxb/erj050

Shi, F.-M. & Li, Y.-Z. (2008). Verticillium dahliae toxins-induced nitric oxide production in Arabidopsis is major dependent on nitrate reductase. BMB Rep., 41, No. 1, pp. 79-85. https://doi.org/10.5483/BMBRep.2008.41.1.079

Karpets, Yu. V., Kolupaev, Yu. E., Yastreb, T. O. & Oboznyi, A. I. (2016). Induction of heat resistance in wheat seedlings by exogenous calcium, hydrogen peroxide, and nitric oxide donor: functional interaction of signal mediators. Russ. J. Plant Physiol., 63, No. 4, pp. 490-498. https://doi.org/10.1134/S1021443716040075

Rosales, E. P., Iannone, M. F., Groppa, M. D. & Benavides, M. P. (2011). Nitric oxide inhibits nitrate reductase activity in wheat leaves. Plant Physiol. Biochem., 49, No. 2, pp. 124-130. https://doi.org/10.1016/j.plaphy.2010.10.009

Vital, S. A., Fowler, R. W., Virgen, A., Gossett, D. R., Banks, S. W. & Rodriguez, J. (2008). Opposing roles for superoxide and nitric oxide in the NaCl stress-induced upregulation of antioxidant enzyme activity in cotton callus tissue. Environ. Exp. Bot., 62, No. 1, pp. 60-68. https://doi.org/10.1016/j.envexpbot.2007.07.006

Published

15.09.2024

How to Cite

Karpets, Y., Kolupaev, Y., & Dmitriev, A. (2024). Induction of NO synthesis in roots of wheat plantlets and development of their heat resistance by exogenous L-arginine and nitrate . Reports of the National Academy of Sciences of Ukraine, (7), 77–84. https://doi.org/10.15407/dopovidi2017.07.077

Most read articles by the same author(s)