Initial-boundary value problem for doubly nonlinear integro-differential equations with variable exponents of nonlinearity
DOI:
https://doi.org/10.15407/dopovidi2017.02.003Keywords:
doubly nonlinear parabolic equation, European option, integro-differential equation, jump-diffusion process, variable exponent of nonlinearityAbstract
We consider the initial-boundary value problem for doubly nonlinear parabolic equations with variable exponents of nonlinearity perturbed by a generator of the jump process arising from the theory of European options. The existence theorem for the problem is proved.
Downloads
References
Gajewski, H., Groger, K., Zacharias, K. (1978). Nonlinear operator equations and operator differential equations. Mos cow: Mir (in Russian).
Merton, R. C. (1976). J. Finan. Econ., 3, pp.125-144. https://doi.org/10.1016/0304-405X(76)90022-2
Bokalo, T. M., Buhrii, O. M. (2011). Ukr. Math. J., 63, Iss. 5, pp. 612-628 (in Ukrainian).
Antontsev, S., Shmarev, S. (2015). Evolution PDEs with nonstandard growth conditions, Existence, uniqueness, localization, blow-up, Atlantis Studies in Differential Equations, Vol. 4. Paris: Atlantis Press.
Souplet, Ph. (1999). J. Differ. Equat., 153, pp. 374-406. https://doi.org/10.1006/jdeq.1998.3535
Bokalo, M., Dmytriv, V. (2001). Visnyk Lviv Univ. Ser. Mech.-Math., Iss. 59, pp. 84-101 (in Ukrainian).
Pinasco, J. P. (2009). Nonlinear Analysis, 71, pp. 1094-1099. https://doi.org/10.1016/j.na.2008.11.030
Buhrii, O., Buhrii, M. (2016). Visnyk Lviv Univ. Ser. Mech.-Math., Iss. 81, pp. 61-84.
Briani, M., Natalini, R., Russo, G. (2007). Calcolo, 44, Iss. 1, pp. 33-57. https://doi.org/10.1007/s10092-007-0128-x
Cifani, S., Jakobsen, E. R., Karlsen, K. H. (2011). BIT, 51, Iss. 4, pp. 809-844. https://doi.org/10.1007/s10543-011-0327-3
Ladyzhenskaya, O. A., Uraltseva, N. N. (1973). Linear and quasilinear elliptic equations. Moscow: Nauka (in Russian).
Dunford, N., Schwartz, J. T. (1962). Linear Operators, Pt. I: General Theory. Moscow: Izd-vo Inostr. lit. (in Russian).
Kovacik, O., Rakosnik, J. (1991). Czech. Math. J., 41 Iss.116, pp. 592-618.
Evans, L. C. (1998). Partial differential equations, Graduate Studies in Mathematics, Vol. 19. Providence, RI: Amer. Math. Soc.,
Galewski, M. (2006). Georgian Math. J., 13, Iss. 2, pp. 261-265.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.