Improvement of the structure and mechanical characteristics of structural intermetallides of the titanium-aluminium system at the directional solidification

Authors

  • L.M. Lobanov E.O. Paton Electric Welding Institute of the NAS of Ukraine, Kiev
  • E.A. Asnis E.O. Paton Electric Welding Institute of the NAS of Ukraine, Kiev
  • N.V. Piskun E.O. Paton Electric Welding Institute of the NAS of Ukraine, Kiev
  • I.I. Statkevich E.O. Paton Electric Welding Institute of the NAS of Ukraine, Kiev

DOI:

https://doi.org/10.15407/dopovidi2018.12.051

Keywords:

directional solidification, intermetallide, mechanical characteristics, structure, zone melting

Abstract

The paper presents the results of investigation of the processes of structure formation and the mechanical properties at the directional solidification of a β-stabilized intermetallic alloy of the titanium-aluminium systems. It is shown that the use of the directional solidification at a crucibleless induction zone melting produces a specific microstructure of alloy Ti-44Al-5Nb-3Cr-1.5Zr (at. %). It is established that the thermal gradient and the rate of solidification in the directional crystallization are the basic thermodynamic tools that make it possible to form an ordered microstructure. Investigations showed that, at the speed of 150 mm/h, the temperature gradient reaches 300 C · cm–1. This leads to the ordering and orientation of the secondary phase microstructure of the material and to the improvement of its physico-mechanical properties. Regulation of the microstructure allows an essential improvement of the high-temperature mechanical properties, namely ultimate strength, Young's modulus, and creep resistance. The results showed that the temperature limit of the structural applicability of alloys of this type can be expanded from 750-800 °C up to 900-950 °C.

Downloads

Download data is not yet available.

References

Kablov, E. N. & Lukin, V. I. (2008). Titanium- and nickel-based intermetallides for details of the new technique. Automatic welding, No. 11, pp. 76-82.

Bochvar, G. A. & Salenkov, V. A. (2004). Study of alloys on the basis of titanium aluminide with ortho rhombic structures. The technology of light alloys, No. 4, pp. 44-46.

Kumpfert, J. & Kaysser, W. A. (2001). Orthorhombic titanium aluminides: phases, phase transformations and microstructure evolution. International journal of materials research, 82, pp. 128-134.

Imaev, V. M., Imaev, P. M., Hismatulin, T. G. (2008). Mechanical properties of Ti-43Al-7(Nb,Mo)-0.2B (at. %) cast intermetallidic alloy after a thermal treatment. The Physics of Metals and Metallography, 105, No. 5, pp. 516-522.

Povarova, K. B., Bannikh, O. A. & Burov, I. V (1998). Structure and some properties of cast alloys based on TiAl doped with V, Nb, Ta, Hf, Zr. Metals, No. 3, pp. 31-41.

Povarova, K. B. & Bannikh, O. A. (1999). Principles of the construction of structural alloys on the basis of intermetallides (Part I). Mater. Sci., No. 3, pp. 27-33.

Chen, G. L., Wang, J. G., Ni, X. D. et al. (2005). A new intermetallic compound in TiAl+Nb composition area of the Ti-Al-Nb ternary system. Intermetallics, 13, pp. 329-336. doi: https://doi.org/10.1016/j.intermet.2004.07.006

Asnis, E. A., Piskun, N. V. & Statkevich, I. I. (2017). Regulation of the structure and phase composition of titanium aluminides produced by zone melting. Dopov. Nac. acad. nauk Ukr, No. 6, pp. 36-45. doi: https://doi.org/10.15407/dopovidi2017.06.036

Ganina, S. M., Ginkin, V. P. & Chernov, K. G. (2014). Mathematical model of heat and mass transfer in the zone-free zone melting of TiAl / SM intermetallides. Problems of Atomic Science and Technology. Ser. Mathematical modeling of physical processes, Iss. 4, pp. 35-43.

Lapin, J. & Gabalkova, Z. (2011). Solidification behavior of TiAl-based alloys studied by directional solidification technique. Intermetallics, 19, No. 6, pp. 797-804. doi: https://doi.org/10.1016/j.intermet.2010.11.021

Kartavykh, A. V., Asnis, E. A., Piskun, N. V. et al. (2016). A promising microstructure/deformability adjustment of β-stabilized γ-TiAl intermetallics. Mater. Lett., 162, pp. 180-184. doi: https://doi.org/10.1016/j.matlet.2015.09.139

Kartavykh, A. V., Asnis, E. A., Piskun, N. V. et al. (2015). Microstructure and mechanical properties control of γ-TiAl(Nb,Cr,Zr) intermetallic alloy by induction float zone processing. J. Alloy. Compd., 643, S182—S186. doi: https://doi.org/10.1016/j.jallcom.2014.12.210

Rostamian, A. & Jacot, A. (2008). A numerical model for the description of the lamellar and massive pha se transformations in TiAl alloys. Intermetallics, 16, pp. 1227-1236. doi: https://doi.org/10.1016/j.intermet.2008.07.008

Appel, F., Paul, J. D. H. & Oering, M. (2011). Gamma Titanium Aluminide Alloys: Science and Technology. Weinheim: WILEY-VCH. 762 p. doi: https://doi.org/10.1002/9783527636204

Schwaighofe, E., Clemens, H., Mayer, S. et al. (2014). Microstructural design and mechanical properties of a cast and heattreated intermetallic multi-phase γ-TiAl based alloy. Intermetallics, 44, pp. 128-140. doi: https://doi.org/10.1016/j.intermet.2013.09.010

Published

20.05.2024

How to Cite

Lobanov, L., Asnis, E., Piskun, N., & Statkevich, I. (2024). Improvement of the structure and mechanical characteristics of structural intermetallides of the titanium-aluminium system at the directional solidification . Reports of the National Academy of Sciences of Ukraine, (12), 51–60. https://doi.org/10.15407/dopovidi2018.12.051