Spectral problem for a Fredholm second-order integro-differential equation

Authors

  • T.K. Yuldashev Reshetnev Siberian State University of Sciences and Technology, Krasnoyarsk, Russia

DOI:

https://doi.org/10.15407/dopovidi2018.12.003

Keywords:

degenerate kernel, integro-differential equation, solvability, spectral parameter, spectral problem

Abstract

The questions of existence and construction of solutions of a homogeneous boundary value-problem for a second-order Fredholm integro-differential equation with degenerate kernel and with spectral parameter are considered. The singularities that arise in the construction of solutions and are associated with the definition of arbitrary (unknown) constants are studided. The values of spectral parameters, for which the solvability of the boundary-value problem is proved and the corresponding solutions are constructed, are calculated.

Downloads

Download data is not yet available.

References

Kalinin, E. D. (2015). Solving the multiparameter eigenvalue problem for weakly coupled systems of second order Hamilton equations. Comput. Math. Math. Phys., 55, No. 1, pp. 43-52. doi: https://doi.org/10.1134/S096554251501008X

Smirnov, Yu. G. (2015). Eigenvalue transmission problems describing the propagation of TE and TM waves in two-layered inhomogeneous anisotropic cylindrical and planar waveguides. Comput. Math. Math. Phys., 55, No. 3, pp. 461-469. doi: https://doi.org/10.1134/S0965542515030173

Cetinkaya, F. A. & Mamedov, K. R. (2017). A boundary value problem wih retarded argument and Dis continuous coefficient in the differential equation. Azerbaijan J. Math., No. 1, pp. 130-141.

Bobodzhanov, A. A. & Safonov, V. F. (2017). Regularized asymptotic solutions of the initial problem for the system of integro-partial differential equations. Math. Notes, 102, No. 1, pp. 22-30. doi: https://doi.org/10.1134/S0001434617070033

Smirnov, Yu. G. (2016). On the equivalence of the electromagnetic problem of diffraction by an inhomogeneous bounded dielectric body to a volume singular integro-differential equation. Comput. Math. Math. Phys., 56, No. 9, pp.1631-1640. doi: https://doi.org/10.1134/S0965542516080145

Phalaleev, M. V. (2012). Integro-differential equations with Fredholm operator on the highest derivative in Banach spaces and their applications. Izv. Irkutskogo gos. univ. Ser. Matem., 5, No. 2, pp. 90-102 (in Russian).

Boichuk, A. A. & Strakh, A. P. (2014). Noetherian boundary-value problems for systems of linear integrodynamical equations with degenerate kernel on a time scale. Nonlinear oscillations, 17, No. 1, pp. 32-38 (in Russian).

Djumabaev, D. S. & Bakirova, E. A. (2015). On one single solvability of boundary value problem for a system of Fredholm integro-differential equations with degenerate kernel. Nonlinear oscillations, 18, No. 4, pp. 489-506 (in Russian).

Yuldashev, T. K. (2016). Nonlocal mixed-value problem for a Boussinesq-type integrodifferential equation with degenerate kernel. Ukr. Math. J., 68, No. 8, pp. 1278-1296. doi: https://doi.org/10.1007/s11253-017-1293-y

Yuldashev, T. K. (2017). Mixed problem for pseudoparabolic integrodifferential equation with degenerate kernel. Diff. Equat., 53, No. 1, pp. 99-108. doi: https://doi.org/10.1134/S0012266117010098

Yuldashev, T. K. (2017). Determination of the coefficient and boundary regime in boundary value problem for integro-differential equation with degenerate kernel. Lobachevskii J. Math., 38, No. 3, pp. 547-553. doi: https://doi.org/10.1134/S199508021703026X

Darovskaya, K. A. & Skubachevsky, A. L. (2011). A spectral problem with integral conditions. J. Math. Sci., 179, No. 3, pp. 437-445. doi: https://doi.org/10.1007/s10958-011-0602-5

Pod''yapol'skii, V. V. (1999). Abel summability of a system of root functions for a nonlocal problem with integral conditions. Math. Notes, 65, No. 5, pp. 672-675. doi: https://doi.org/10.1007/BF02743181

Shkalikov, A. A. (1982). On the basis property of the eigenfunctions of ordinary differential operators with integral boundary conditions. Vestn. Moskov. univ. Ser. 1. Matematika, mekhanika, No. 6, pp. 12-21 (in Russian).

Yuldashev, T. K. (2017). Solvability and determination of the coefficient in one boundary-value problem for the integro-differential Fredholm equation with a degenerate kernel. Dopov. Nac. akad. nauk Ukr., No. 5, pp. 8-16 (in Russian). doi: https://doi.org/10.15407/dopovidi2017.05.008

Published

20.05.2024

How to Cite

Yuldashev, T. (2024). Spectral problem for a Fredholm second-order integro-differential equation . Reports of the National Academy of Sciences of Ukraine, (12), 3–13. https://doi.org/10.15407/dopovidi2018.12.003