Hematological effects of the maleimide derivative during the activation of erythropoiesis induced by cobalt chloride
DOI:
https://doi.org/10.15407/dopovidi2018.06.105Keywords:
leukocytes, maleimide derivative, platelets, protein kinases inhibitor, red blood cellsAbstract
The effect of the protein kinase inhibitor maleimide derivative (MI-1, 1-(4-Cl-benzyl)-3-Cl-4-(CF3-pheny lamino)-1Hpyrrole-2,5-dione) with antitumor activity on the condition of blood cells during the activation of erythropoiesis induced by cobalt chloride has been studied. It is shown that MI-1 in a dose of 5 mg/kg (1/100 LD50) activates erythropoiesis, which is confirmed by an increase in the number of red blood cells, hematocrit, and the hemoglobin concentration in blood. With the combined action of MI-1 and CoCl2, the erythropoiesis stimulation is enhanced. MI-1 does not change the number of platelets in blood, but it slightly reduces the number of leukocytes due to neutrophilic granulocytes, monocytes, and lymphocytes, which testifies to the suppression of leukopoiesis. Thus, the stimulating effect of MI-1 on erythropoiesis and the low hematotoxicity of this compound indicate its superiority in comparison with traditional antitumor agents.
Downloads
References
Sviezhentseva, I. O., Perekhrestenko, T. P., Bilko, D. I., Gordienko, A. I., Diachenko, M. V. & Dyagil, I. S. (2015). Functional activity of CD34-positive cells in chronic myeloid leukemia patients with different response to imatinib therapy. Exp. Oncol., 37, No. 1, pp. 70-72.
Cortes, J. E., Kim, D. W., Kantarjian, H. M., Brümmendorf, T. H., Dyagil, I., Griskevicius, L., Malhotra, H., Powell, C., Gogat, K., Countouriotis, A. M. & Gambacorti-Passerini, C. (2012). Bosutinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia: Results from the BELA trial. J. Clin. Oncol., 30, No. 28, pp. 3486-3492. doi: https://doi.org/10.1200/JCO.2011.38.7522
Dubinina, G. G., Golovach, S. M., Kozlovsky, V. O., Tolmachov, A. O. & Volovenko, Yu. M. (2007). Antiproliferative activity of the new derivatives of 1-(4-R-benzyl)-3-R1-4-(R2-phenylamino)-1N-pyrrole-2,5-dione. Zh. Organ. ta Farm. Khimii, 5, No. 1, pp. 39-49 (in Ukrainian).
Lynchak, O. V., Prylutskyy, Yu. I., Rybalchenko, V. K., Kyzyma, O. A., Soloviov, D., Kostjukov, V. V., Evstigneev, M. P., Ritter, U. & Scharff, P. (2017). Comparative analysis of the antineoplastic activity of C60 fullerene with 5-fluorouracil and pyrrole derivative in vivo. Nanoscale Res. Lett., 12., No. 8, pp. 1-6. doi: https://doi.org/10.1186/s11671-016-1775-0
Byelinska, I. V., Lynchak, O. V., Rybalchenko, T. V. & Gurnyak, O. M. (2014). Hematological effects of the protein kinases inhibitor maleimide derivative of dimethylhydrazine-induced colorectal carcinogenesis of rats. Fiziol. Zh., 60, No. 4, pp. 40-49 (in Ukrainian). doi: https://doi.org/10.15407/fz60.04.040
Filinska, O. M., Yablonska, S. V., Mandryk, S. Y., Kharchuk, I. V., Ostrovska, G. V., & Rybalchenko, V. K. (2010). State of the liver antioxidant system and content of matrix metalloproteinase-2 of large intestine under the effect of maleimide derivative in experimental colon carcinogenesis in rats. Ukr. Biochem. J., 82, No. 4, pp. 69-77 (in Ukrainian).
Byelinska, I. V., Lynchak, O. V., Tsyvinska, S. M., Rybalchenko, V. K. (2015). Morphofunctional state of blood cells after chronic exposure of the protein kinases inhibitor maleimide derivative. Fiziol. Zh., 61, No. 4, pp. 71-77 (in Ukrainian). doi: https://doi.org/10.15407/fz61.04.071
Kharchuk, I. V., Filinska, O. M., Yablonska, S. V. & Rybalchenko, T. V. (2010). The structure functional status of rat kidney and pancreas after the long-term influence of novel targeted-action compound — maleimide derivative. Dopov. Nac. acad. nauk Ukr., No. 7, pp. 150-154 (in Ukrainian).
Byelinska, I. V., Rybalchenko, T. V., Tsyvinska, S. M. & Rybalchenko, V. K. (2017). The hematological effects of the proteine kinases inhibitor maleimide derivative and 5-fluorouracil. Fiziol Zh., 63, No. 4, pp. 37-47 (in Ukrainian). doi: https://doi.org/10.15407/fz63.04.037
Bononi, A., Agnoletto, C., De Marchi, E., Marchi, S., Patergnani, S., Bonora, M., Giorgi, C., Missiroli, S., Poletti, F., Rimessi, A. & Pinton, P. (2011). Protein kinases and phosphatases in the control of cell fate. Enzyme Res., 2011, pp. 26. doi: https://doi.org/10.4061/2011/329098
Bhata, S. S., Wroblewski, K. E., Agarwal, K. L., Sit, L., Cohen, E. E., Seiwert, T. Y., Karrison, T., Bakris, G. L., Ratain, M. J., Vokes, E. E. & Maitland, M. L. (2013). Effects of vascular endothelial growth factor signaling inhibition on human erythropoiesis. Oncologist, 18, No. 8, pp. 965-970. doi: https://doi.org/10.1634/theoncologist.2013-0006
Ebert, B. & Jelkmann, W. (2014). Intolerability of cobalt salt as erythropoietic agent. Drug Test Anal., 6, No. 3, pp. 185-189. doi: https://doi.org/10.1002/dta.1528
Yablonska, S. V., Filinska, O. M., Ostrovska, G. V. & Rybalchenko, V. K. (2009). Evaluation of hepatotoxisity of novel maleimide derivative with cytostatic activity and its influense on peroxidation process and antioxidant system in liver. Ukr. Biokhim. Zh., 81, No. 5, pp. 83-92 (in Ukrainian).
Kaushansky, K., Lichtman, M. A., Kipps, T. J., Seligsohn, U. & Prchal, J. (2010). Williams hematology. 8th ed. Columbus: TheMcGraw-HillCompanies.
Simonsen, L. O., Harbak, H. & Bennekou, P. (2012). Cobalt metabolism and toxicology — a brief update. SciTotalEnviron., 15, No. 432, pp. 210-215. doi: https://doi.org/10.1016/j.scitotenv.2012.06.009
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.