Enhancement of the efficiency of heat removal from powerful electronic devices through thermal interfaces based on aluminum nitride films
DOI:
https://doi.org/10.15407/dopovidi2018.03.059Keywords:
aluminum nitride, heat sink, LED, thermal interfacesAbstract
The efficiency of aluminum nitride films as thermal interfaces has been studied. It is shown that such films obtained in a hybrid helicon-arc ion-plasma reactor significantly improve the heat removal from the crystals of electronic devices, in particular, from powerful LEDs or LED assemblies, and thus noteworthy increase their luminosity, reliability, and durability.
Downloads
References
Moore, A. L.& Shi, L. (2014). Emerging challenges and materials for thermal management of electronics. Mater. Today. 17, No. 4, pp. 163-174. doi: https://doi.org/10.1016/j.mattod.2014.04.003
Pollack, G. L. (1969). Kapitza resistance. Rev. Modern Phys. 41, No. 1, pp. 48-81. doi: https://doi.org/10.1103/RevModPhys.41.48
Due, J. & Robinson, A. J. (2013). Reliability of thermal interface materials: a review. Appl. Thermal Eng. 50, No. 1, pp. 455-463. doi: https://doi.org/10.1016/j.applthermaleng.2012.06.013
Prasher, R. (2006) Thermal interface materials: historical perspective, status, and future directions. Proc. IEEE, 94, No. 8, pp. 1571-1586. doi: https://doi.org/10.1109/JPROC.2006.879796
Bogner, M., Benstetter, G. & Fu, Y. Q. (2017). Cross- and in-plane thermal conductivity of AlN thin films measured using differential 3-omega method. Surf. Coat. Technol. 320, pp. 91-96. doi: https://doi.org/10.1016/j.surfcoat.2017.01.100
Chasnyk, V. I. (2013). Application of high-conductivity aluminum nitride ceramics in vacuum electronic microwave devices. Techn. Design. Electron. Equipment. No. 4, pp. 8-12 (in Russian).
Slack, G. A. (1973). Nonmetallic crystals with high thermal conductivity. J. Phys. Chem. Solids. 34, No. 2, pp. 321-335. doi: https://doi.org/10.1016/0022-3697(73)90092-9
Pan, T. S., Zhang, Y., Huang, J., Zeng, B., Hong, D. H., Wang, S. J., Zeng, H. Z., Gao, M., Huang, W. & Lin, Y. (2012). Enhanced thermal conductivity of polycrystalline aluminum nitride thin films by optimizing the interface structure. J. Appl. Phys. 112, No. 4, pp. 044905-1-044905-5. doi: https://doi.org/10.1063/1.4748048
Semeniuk, V. F., Rudenko, E. M., Korotash, I. V., Osipov, L. S., Polotsky, D. Yu., Shamray, V. V., Odino kov, V. V., Pavlov, G. Ya. & Sologub, V.A. (2011). Unified technological ion-plasma equipment for the formation of nanostructures. Metallofiz. Noveishie Tekhnol. 33, No. 2, pp. 223-231 (in Russian).
Osipov, L., Rudenko, E., Semeniuk, V., Korotash, I., Odinokov, V., Pavlov, G. & Sologub, V. (2010). Highly effective source of the low-temperature deposition of films and coatings. Nanoindustr. No 2, pp. 4-6 (in Russian).
Pat. 87747 UA, IPC C23C 14/34 (2006.01), Plasma device for application of multilayered film coatings, Veremejchenko, G. N., Korotash, I. V., Rudenko, E. M., Semeniuk, V. F., Odinokov, V. V., Pavlov, H. Y. & Solohub, V. A. Publ. 25.02.2014 (in Ukrainian).
Vorobyov, Yu. V., Dobrovolskii, V. N. & Strikha, V. I. (1988). Methods for studying semiconductors. Kyiv: Vyshcha Shkola.
Chen, G. (2005). Nanoscale energy transport and conversion: a parallel treatment of electrons, molecules, phonons, and photons. Oxford: Oxford Univ. Press.
Little, W.A. (1959). The transport of heat between dissimilar solids at low temperatures. Can. J. Phys. 37, No. 3, pp. 334-349. doi: https://doi.org/10.1139/p59-037
Swartz, E. T. & Pohl, T. O. (1989). Thermal boundary resistance. Rev. Mod. Phys. 61, No. 3, pp. 605-668. doi: https://doi.org/10.1103/RevModPhys.61.605
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.