Enhancement of the efficiency of heat removal from powerful electronic devices through thermal interfaces based on aluminum nitride films

Authors

  • E.M. Rudenko G.V. Kurdyumov Institute for Metal Physics of the NAS of Ukraine, Kiev
  • V. M. Sorokin V.E. Lashkaryov Institute of Semiconductor Physics of the NAS of Ukraine, Kiev
  • I.V. Korotash G.V. Kurdyumov Institute for Metal Physics of the NAS of Ukraine, Kiev
  • D.Yu. Polotsky G.V. Kurdyumov Institute for Metal Physics of the NAS of Ukraine, Kiev
  • A.O. Krakovny G.V. Kurdyumov Institute for Metal Physics of the NAS of Ukraine, Kiev
  • O.Yu. Suvorov G.V. Kurdyumov Institute for Metal Physics of the NAS of Ukraine, Kiev
  • M.О. Belogolovskii G.V. Kurdyumov Institute for Metal Physics of the NAS of Ukraine, Kiev
  • D.V. Pekur V.E. Lashkaryov Institute of Semiconductor Physics of the NAS of Ukraine, Kiev

DOI:

https://doi.org/10.15407/dopovidi2018.03.059

Keywords:

aluminum nitride, heat sink, LED, thermal interfaces

Abstract

The efficiency of aluminum nitride films as thermal interfaces has been studied. It is shown that such films obtained in a hybrid helicon-arc ion-plasma reactor significantly improve the heat removal from the crystals of electronic devices, in particular, from powerful LEDs or LED assemblies, and thus noteworthy increase their luminosity, reliability, and durability.

Downloads

References

Moore, A. L.& Shi, L. (2014). Emerging challenges and materials for thermal management of electronics. Mater. Today. 17, No. 4, pp. 163-174. doi: https://doi.org/10.1016/j.mattod.2014.04.003

Pollack, G. L. (1969). Kapitza resistance. Rev. Modern Phys. 41, No. 1, pp. 48-81. doi: https://doi.org/10.1103/RevModPhys.41.48

Due, J. & Robinson, A. J. (2013). Reliability of thermal interface materials: a review. Appl. Thermal Eng. 50, No. 1, pp. 455-463. doi: https://doi.org/10.1016/j.applthermaleng.2012.06.013

Prasher, R. (2006) Thermal interface materials: historical perspective, status, and future directions. Proc. IEEE, 94, No. 8, pp. 1571-1586. doi: https://doi.org/10.1109/JPROC.2006.879796

Bogner, M., Benstetter, G. & Fu, Y. Q. (2017). Cross- and in-plane thermal conductivity of AlN thin films measured using differential 3-omega method. Surf. Coat. Technol. 320, pp. 91-96. doi: https://doi.org/10.1016/j.surfcoat.2017.01.100

Chasnyk, V. I. (2013). Application of high-conductivity aluminum nitride ceramics in vacuum electronic microwave devices. Techn. Design. Electron. Equipment. No. 4, pp. 8-12 (in Russian).

Slack, G. A. (1973). Nonmetallic crystals with high thermal conductivity. J. Phys. Chem. Solids. 34, No. 2, pp. 321-335. doi: https://doi.org/10.1016/0022-3697(73)90092-9

Pan, T. S., Zhang, Y., Huang, J., Zeng, B., Hong, D. H., Wang, S. J., Zeng, H. Z., Gao, M., Huang, W. & Lin, Y. (2012). Enhanced thermal conductivity of polycrystalline aluminum nitride thin films by optimizing the interface structure. J. Appl. Phys. 112, No. 4, pp. 044905-1-044905-5. doi: https://doi.org/10.1063/1.4748048

Semeniuk, V. F., Rudenko, E. M., Korotash, I. V., Osipov, L. S., Polotsky, D. Yu., Shamray, V. V., Odino kov, V. V., Pavlov, G. Ya. & Sologub, V.A. (2011). Unified technological ion-plasma equipment for the formation of nanostructures. Metallofiz. Noveishie Tekhnol. 33, No. 2, pp. 223-231 (in Russian).

Osipov, L., Rudenko, E., Semeniuk, V., Korotash, I., Odinokov, V., Pavlov, G. & Sologub, V. (2010). Highly effective source of the low-temperature deposition of films and coatings. Nanoindustr. No 2, pp. 4-6 (in Russian).

Pat. 87747 UA, IPC C23C 14/34 (2006.01), Plasma device for application of multilayered film coatings, Veremejchenko, G. N., Korotash, I. V., Rudenko, E. M., Semeniuk, V. F., Odinokov, V. V., Pavlov, H. Y. & Solohub, V. A. Publ. 25.02.2014 (in Ukrainian).

Vorobyov, Yu. V., Dobrovolskii, V. N. & Strikha, V. I. (1988). Methods for studying semiconductors. Kyiv: Vyshcha Shkola.

Chen, G. (2005). Nanoscale energy transport and conversion: a parallel treatment of electrons, molecules, phonons, and photons. Oxford: Oxford Univ. Press.

Little, W.A. (1959). The transport of heat between dissimilar solids at low temperatures. Can. J. Phys. 37, No. 3, pp. 334-349. doi: https://doi.org/10.1139/p59-037

Swartz, E. T. & Pohl, T. O. (1989). Thermal boundary resistance. Rev. Mod. Phys. 61, No. 3, pp. 605-668. doi: https://doi.org/10.1103/RevModPhys.61.605

Published

09.05.2024

How to Cite

Rudenko, E., Sorokin, V. M., Korotash, I., Polotsky, D., Krakovny, A., Suvorov, O., Belogolovskii, M., & Pekur, D. (2024). Enhancement of the efficiency of heat removal from powerful electronic devices through thermal interfaces based on aluminum nitride films . Reports of the National Academy of Sciences of Ukraine, (3), 59–68. https://doi.org/10.15407/dopovidi2018.03.059

Most read articles by the same author(s)