REGULARITIES OF ISOVALENT ATOM SUBSTITUTION INFLUENCE ON THE STRUCTURE OF AIILn BIIIO TYPE COMPOUNDS

Authors

DOI:

https://doi.org/10.15407/dopovidi2024.01.058

Keywords:

phases of (AII, AII*)(Ln, Ln*)2 B2 IIIO7 type, slab perovskite-like structure, isomorphic substitutions

Abstract

Based on the analysis of the structural data of phases ((AII, AII*)(Ln, Ln*)2 B2 IIIO7 (AII = Ba, Sr, AII* = Sr, Ca, Ln = La, Nd, Ln* = Sm, Dy, BIII = In, Sc), the regularities of the influence of isovalent substitutions of AII and Ln atoms in the slab perovskite-like structure of AIILn2B2 IIIO7-type compounds on its structure were determined. It was obserbed that an increase in the degree of substitution of AII and Ln atoms in the slab structure of AII1−x, AxII*Ln2 B2IIIO7 and AIILn2−x Lnx*B2 IIIO7 type phases leads to an increase in the degree of deformation (Δ) of interblock polyhedra of AO9 and to a decrease in the length of the interblock distance A — O. It was found that the values of ΔAO9 and ΔAO12 in the structure of AII1−x, AxII*Ln2 B2 IIIO7 and AIILn2−x Lnx*B2IIIO7 depend on the type of syngonia of lattice and are highest in tetragonal solid solutions. The distribution of Ba, Sr, and REE atoms in (AII, AII*)(Ln, Ln*)2 B2IIIO7 structures is determined by the value of difference in their radii, with an increase contributing to the ordering of the distribution of Ba, Sr, and REE atoms in AO9 and AO12 polyhedra. Structural factors affecting the stability of (AII, AII*)(Ln, Ln*)2 B2IIIO7 phases with a slab perovskite-like structure have been identified.

Downloads

Download data is not yet available.

References

Schaak, R. E. & Mallouk, T. E. (2002). Perovskites by design: a toolbox of solid-state reactions. Chem. Mater., 14, No. 4, pp. 1455-1471. https://doi.org/10.1021/cm010689m

Nirala, G., Yadav, D. & Upadhyay, S. (2020). Ruddlesden-Popper phase A2BO4 oxides: Recent studes on structure, electrical, dielectric and optical properties. J. Adv. Ceram., 9, No. 2, pp. 129-148. https://doi.org/10.1007/s40145-020-0365-x

Xiao, H., Liu, P., Wang, W., Ran, R., Zhou, W. & Shao, Z. (2020). Ruddlesden—Popper perovskite oxides for photocatalysis-based water splitting and wastewater treatment. Energy Fuels, 34, No. 8, pp. 9208-9221. https://doi.org/10.1021/acs.energyfuels.0c02301

Ding, P., Li, W., Zhao, H., Wu, C., Zhao, L., Dong, B. & Wang, S. (2021). Review on Ruddlesden—Popper perovskites as cathode for solid oxide fuel cells. J. Phys.: Mater., 4, No. 2, 022002. https://doi.org/10.1088/2515-7639/abe392

Kato, S., Ogasawara, M., Sugai, M., & Nakata, S. (2002). Synthesis and oxide ion conductivity of new layered perovs- kite La1−xSr1+xInO4−d. Solid State Ion., 149, No. 1-2, pp. 53—57. https://doi.org/10.1016/S0167-2738(02)00138-8

Prado, F. & Manthiram, A. (2001). Synthesis, crystal chemistry, and electrical and magnetic properties of Sr3Fe2−xCoxO7−δ (0 ≤ x ≤ 0.8). J. Solid State Chem., 158, No. 2, pp. 307-314. https://doi.org/10.1006/jssc.2001.9111

Kim, I.-S., Kawaji, H., Itoh, M. & Nakamura, T. (1992). Structural and dielectric studies on the new series of layered compounds, strontium lanthanum scandium oxides. Mat. Res. Bull., 27, No. 10, pp. 1193-1203. https://doi.org/10.1016/0025-5408(92)90227-Q

Kamimura, S., Yamada, H. & Xu, C.-N. (2012). Strong reddish-orange light emission from stress-activated 3+Srn+1SnnO3n+1:Sm (n = 1, 2, ∞) with perovskite-related structures. Appl. Phys. Lett., 101, 091113. https://doi.org/10.1063/1.4749807

Titov, Y. A., Belyavina, N. M., Slobodyanik, M. S. & Chumak, V. V. (2016). Crystal structure of isovalent substituted slab indatesBa1−xSrxLa2In2O7. Dopov. Nac. akad. nauk Ukr., No. 6, pp. 95-102 (in Ukrainian). https://doi.org/10.15407/dopovidi2016.06.095

Titov, Y. A., Belyavina, N. N., Slobodyanik, M. S., Nakonechna, O. I. & Strutynska, N. Yu. (2022). Synthesis and crystal structure of two-slab Ba1−xSrxNd2In2O7 indates. Phys. Chem. Solid State, 23, No. 2, pp. 375-379. https://doi.org/10.15330/pcss.23.2.375-379

Titov, Y., Belyavina, N., Slobodyanik, M., Nakonechna, O. & Strutynska, N. (2021). Effect of strontium atoms substitution on the features of two-slab structure of Sr1−xCaxLa2Sc2O7 scandates. Fr.-Ukr. J. Chem., 9, No. 1, pp. 44-50. https://doi.org/10.17721/fujcV9I1P44-50

Titov, Y., Belyavina, N., Slobodyanik, M., Nakonechna, O., Strutynska, N. & Tymoshenko, M. (2020). Effect of isovalent substitution on the crystal structure and properties of two-slab indates BaLa2−xSmxIn2O7. Open Chem., 18, No. 1, pp. 1294-1303. https://doi.org/10.1515/chem-2020-0090

Titov, Y. A., Belyavina, N. M., Slobodyanik, M. S., Nakonechna, O. I., Strutynska, N. Yu. & Chumak, V. V. (2022). Effect of isovalent substitution on structure of the two-slab BaNd2−xSmxIn2O7 indates. Phys. Chem. Solid State, 23, No. 4, pp. 801-808. https://doi.org/10.15330/pcss.23.4.801-808

Titov, Y. A., Chumak, V. V. & Tymoshenko, M. V. (2022). Synthesis and crystal structure of two-slab scandates BaLa2−xDyxSc2O7. Dopov. Nac. akad. nauk Ukr., No. 3, pp. 68-76 (in Ukrainian). https://doi.org/10.15407/dopovidi2022.03.068

Titov, Y. A., Belyavina, N. M., Slobodyanik, M. S., Chumak, V. V. & Nakonechna, O. I. (2019). Synthesis and crystal structure of isovalently substituted slab SrLa2−xDyxSc2O7 scandates. Voprosy khimii i khimicheskoi tekhnologii, No. 6, pp. 228-235 (in Ukrainian). https://doi.org/10.32434/0321-4095-2019-127-6-228-235

Published

27.02.2024

How to Cite

Titov, Y., Slobodyanik, M., & Chumak, V. (2024). REGULARITIES OF ISOVALENT ATOM SUBSTITUTION INFLUENCE ON THE STRUCTURE OF AIILn BIIIO TYPE COMPOUNDS. Reports of the National Academy of Sciences of Ukraine, (1), 58–63. https://doi.org/10.15407/dopovidi2024.01.058

Most read articles by the same author(s)

<< < 1 2 3 4 > >>