On the Dirichlet problem for A-harmonic functions

Authors

DOI:

https://doi.org/10.15407/dopovidi2023.04.011

Keywords:

A-harmonic equations, degenerate Beltrami equations, BMO, bounded mean oscillation, FMO, finite mean oscillation, Dirichlet problem, potential theory

Abstract

We study the Dirichlet boundary value problem with continuous boundary data for the A-harmonic equations div[A grad u] = 0 in an arbitrary bounded domain D of the complex plane £ with no boundary component degenerated to a single point. We provide integral criteria, including the BMO and FMO criteria expressed in terms of A (z), for the existence of weak solutions to the problem. We also discuss the connections between A-harmonic functions and potential theory.

Downloads

Download data is not yet available.

References

Gutlyanskii, V., Ryazanov, V., Sevost’yanov, E. & Yakubov, E. (2023). Hydrodynamic normalization in the theory of degenerate Beltrami equations. Dopov. Nac. akad. nauk Ukr., No. 2, pp. 10-17. https://doi.org/10.15407/ dopovidi2023.02.010

Gutlyanskii ,V., Ryazanov, V., Sevost’yanov, E. & Yakubov, E. (2023). On the Dirichlet problem for degenerate Beltrami equations. Dopov. Nac. akad. nauk Ukr., No. 3, pp. 9-16. https://doi.org/10.15407/dopovidi2023.03.009

Astala, K., Iwaniec, T. & Martin, G. (2009). Elliptic partial differential equations and quasiconformal mappings in the plane. Princeton Math. Series 48. Princeton Univ. Press.

Heinonen, J., Kilpelainen, T. & Martio, O. (1993). Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford Math. Monographs, Oxford ets.: Clarendon Press.

Ransford, Th. (1995). Potential theory in the complex plane. London Math. Society Student Texts 28. Cambridge: Univ. Press.

Ryazanov, V., Srebro, U. & Yakubov, E. (2012). Integral conditions in the theory of the Beltrami equations. Complex Var. Elliptic Equ. 57, No. 12, pp. 1247-1270.

Stoilow, S. (1956). Lecons sur les Principes Topologue de le Theorie des Fonctions Analytique. Paris: Gauthier- Villars.

Nevanlinna, R. (1974). Eindeutige analytische Funktionen. 2. Aufl. Reprint. (German) Die Grundlehren der mathematischen Wissenschaften. Band 46. Berlin-Heidelberg-New York: Springer.

Saff, E. B. & Totik, V. (1997). Logarithmic potentials with external fields. Grundlehren der Mathematischen Wissenschaften. 316. Berlin: Springer.

Wiener, N. (1924). The Dirichlet problem. Mass. J. of Math. 3, pp. 129-146.

Downloads

Published

08.09.2023

How to Cite

Gutlyanskiĭ, V., Ryazanov, V., Sevost’yanov, E., & Yakubov, E. (2023). On the Dirichlet problem for A-harmonic functions. Reports of the National Academy of Sciences of Ukraine, (4), 11–19. https://doi.org/10.15407/dopovidi2023.04.011

Section

Mathematics