Th e age of detrital zircon from metasedimentary rocks of the Ternuvate strata (West Azov block of the Ukrainian Shield)

Authors

  • G.V. Artemenko M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of the NAS of Ukraine, Kyiv https://orcid.org/0000-0002-4528-6853
  • L.V. Shumlyanskyy Curtin University, School of Earth and Planetary Sciences, Perth, Australia https://orcid.org/0000-0002-6775-4419
  • L.S. Dovbysh M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of the NAS of Ukraine, Kyiv

DOI:

https://doi.org/10.15407/dopovidi2023.03.049

Keywords:

Haichur structure, Ternuvate sequence, muscovite-biotite gneiss, Huliaipole block, Vovcha block, Remivka block, zircon, U-Pb age, metasedimentary rocks

Abstract

The Ternuvate strata comprise metamorphic rocks that make up the Haichur arcuate structure, which is about 72 km long. Its western part lies within the Andriivka fault zone, which separates the Vovcha and Huliaipole blocks, while the eastern part is located within the Ternuvate fault zone, traced on the Remivka block. The rocks composing the Haichur structure have irregular and laterally variable composition, changeable thickness, and exhibit dynamometamorphic structures of boudinage and schistosity. The upper part of the Ternuvate strata mainly consists of metasedimentary rocks, including gneisses, biotite schists, garnet-biotite, magnetite-amphibole, and feldspar quartzites. The lower part comprises volcanogenic rocks such as amphibolites, metaultrabasites, and biotite-amphibole gneisses. Using the LA-ICP-MS method, 38 zircon crystals from muscovite-biotite gneisses in the upper part of the Ternuvate strata were analyzed. Based on the geochemical data, these zircons are metamorphosed graywackes. The zircon crystals belong to several age populations (3.65-3.45 and 3.3-2.95 Ga), corresponding to the major stages of Archean crust formation in the West Azov domain, including the formation of the oldest basement and granite-greenstone complexes of the Paleoarchean and Mesoarchean ages. Identical populations of detrital zircon were found in the early Precambrian metaterrigenous rocks of the Krutobalka Formation in the Sorokyne greenstone structure. The correspondence between the Paleoarchean crust (3.45-3.65 Ga) of the West Azov block of the Ukrainian Shield and the Kursk-Besedine granulite-gneiss area of the Kursk Magnetic Anomaly block is evident, while the Paleoarchean and Mesoarchean complexes (2.9-3.3 Ga) correspond to the Mykhailivka and Orel-Tim granite-greenstone area of the Kursk Magnetic Anomaly block. The Archean complexes of Sarmatia are of the same age as similar formations in the Kaapvaal craton in South Africa, Bastar craton in India, North China Craton, Slave craton in Canada, and others, which formed during the Eoarchaean.

Downloads

References

Kinshakov, V. N. (1990). Deep geological mapping at a scale 1 : 50000, carried out in 1986-1990. Sheets L-37-1-B, L-37-1-G. Kyiv (in Russian).

Isipchuk, K. Yu., Bobrov, O. B., Stepanyuk, L. M. et. al. (2004). Correlative chronostratigraphic chart of the Early Precambrian of the Ukrainian shield (chart and explanatory note). Kyiv: UkrDGRI (in Ukrainian).

Artemenko, G. V., Samborska, I. A., Shvaika, I. A., Gogolev, K. I. & Dovbush, T. I. (2018). The stages of Early Proterozoic collision granitoid magmatism and metamorphism on the Azov and Middle-Dnieper megablocks of the Ukrainian Shield. Mineralogical journal, 40, No. 2, pp. 45-62 (in Russian). https://doi.org/10.15407/

mineraljournal.40.02.045

Pereverzev, S. I. (1989). New data on the age and stratigraphic position of the Osypenkovo Formation (Azov Block). Geologìčnij žurnal, No. 4, pp. 56-64 (in Russian).

Predovsky, A. A. (1970). Geochemical reconstruction of the primary composition of metamorphosed volcanogenic-sedimentary formations of the Precambrian. Apatity (in Russian).

Predovsky, A. A. (1980). Reconstruction of the conditions of sedimentogenesis and volcanism of the early Precambrian. Leningrad: Nauka (in Russian).

Kiktenko, V. F. (1982). Deep geological mapping at a scale smaller than 1 : 200000 within sheets M-37-XXXI, / -37-I, VII (Western Azov region — sheets M-37-133; M-37-134-B; / - 37-1 ; / - 37-2; / -37-13; / - 37-14; / - 37-25-A, B; / - 37-26-A, B). Kyiv (in Russian).

Stern, R. A., Bodorkos, S., Kamo, S. L., Hickman, A. H., Corfu, F. (2009). Measurement of SIMS instrumental mass fractionation of Pb isotopes during zircon dating. Geostand. Geoanal. Res., 33, pp. 145-168. https://doi.org/10.1111/j.1751-908X.2009.00023.x

Jackson, S. E., Pearson, N. J., Griffin, W. L., Belousova, E. A. (2004). The application of laser abla-tion-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem. Geol., 211, pp. 47-69. https://doi.org/10.1016/j.chemgeo.2004.06.017

Sláma, J., Košler, J., Condon, D. J., Crowley, J. L., Gerde, A., Hanchar, J. M., Horstwood, M. S., Morris, G. A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett M. N. & Whitehouse, M. J. (2008). Plešovice zircon – a new natural reference material for U-Pb and Hf isotopic microanalysis. Chem. Geol., 249, pp. 1-35. https://doi.org/10.1016/j.chemgeo.2007.11.005

Paton, C., Hellstrom, J., Paul, B., Woodhead, J. & Hergt, J. (2011). Iolite: freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom., 26, pp. 2508-2518. https://doi.org/10.1039/C1JA10172B

Artemenko, G. V. & Shumlyanskyy, L. V. (2021). The Paleoarchean (3,3 Ga) and Mesoarchean (3,0 Ga) to-nalite-trondhjemite-granodiorite rocks of the West Azov Area (the Ukrainian Shield). Geologìčnij žurnal, No. 3, pp. 35-47. https://doi.org/10.30836/igs.1025-6814.2021.3.228873

Artemenko, G. V., Shumlyanskyy, L. V. & Shvaika, I. A. (2014). The late Paleoarchean tonalite gneisses of West-Azov block (Azov megablock of Ukrainian shield). Geologičnij žurnal, No. 4, pp. 91-102 (in Russian). https://doi.org/10.30836/igs.1025-6814.2014.4.139191

Artemenko, G. V., Shumlyanskyy, L. V., Wilde, S. A., Whitehouse, M. J. & Bekker, A. Yu. (2021). The U-Pb age and Lu-Hf isotope systematics of zircon from the Huliaipole metavolcanics, the Azov domain of the Ukrainian shield: evidence for the Paleoarchean-Hadean crust. Geologičnij žurnal, No. 1, pp. 3-16. https://doi.org/10.30836/igs.1025-6814.2021.1.216989

Bibikova, E. V. & Williams, I. S. (1990). Ion microprobe U-Th-Pb isotopic studies of zircons from three early Precambrian areas in the U.S.S.R. Precambrian Res., 48, pp. 203-221. https://doi.org/10.1016/0301-9268(90)90009-F

Lobach-Zhuchenko, S. B., Bibikova, E. V., Balagansky, V. A., Sergeev, S. A., Artemenko, G. V., Arestova, N. A., Shcherbak, N. P., Presnyakov, S. L. (2010). Paleoarchean tonalites in the Paleoproterozoic Orekhiv-Pavlohrad collision zone of the Ukrainian Shield. Doklady AN, 433, No. 2, P. 212-218 (in Russian).

Shcherbak, N. P., Artemenko, G. V. Lesnaya, I. M. & Ponomarenko, A. N. (2005). Geochronology of the Early Precambrian of the Ukrainian Shield (Archaean). Kyiv: Naukova Dumka (in Russian).

Bibikova, E. V., Claesson, S., Fedotova, A. A., Artemenko, G. V. & Ilyinsky, L. (2010). Terrigenous zircon of the Archean greenstone belts — a source of information about the early crust of the Earth: Azov and Dnieper regions, Ukrainian Shield. Geokhimiya, No. 9, pp. 899-916 (in Russian).

Bibikova, E., Fedotova, A., Claesson, S., Anosova, M. & Shumlyanskyy, L. (2013). The time of the continental crust origin in the early history of the Earth: isotopic and geochemical (U-Th-Pb, Lu-Hf, REE) study of terri-genous zircons of Archean metasedimentary rocks Sarmatia. In Problems of the Origin and Evolution of the Biosphere (pp. 147-167). Moscow: Krasand (in Russian).

Savko, K. A., Samsonov, A. V., Chervyakovskaya, M. V., Korish, E. Kh., Larionov, A. N. & Bazikov, N. S. (2020). Age and Lu-Hf isotope systematics of zircon from metapelite granulites of the Kursk-Besedino Domain: evi-dence of the Paleoarchean crust within the Kursk Block of Sarmatia. Vestnik VGU, Ser. Geologia, 2020, No. 3, pp. 30-44 (in Russian). https://doi.org/10.17308/geology.2020.3/3007

Savko, K. A., Samsonov, A. V., Larionov, A. N., Chervyakovskaya, M. V., Korish, E. H., Larionova, Y. O., Bazikov, N. S. & Tsybulyaev, S. V. (2021). A buried Paleoarchean core of the Eastern Sarmatia, Kursk block: U-Pb, Lu-Hf and Sm-Nd isotope mapping and paleotectonic application. Precambrian Res., 353, 106021. https://doi.org/10.1016/j.precamres.2020.106021

Artemenko, G. V., Shumlyanskyy, L. V., Bekker, A. Yu. & Hoffmann, A. (2022). Zircon age of metarhyodacite of the Aleksandrovsk suite of the Mykhailivka series (megablock KMA). Geochemistry and ore formation, Iss. 43, pp. 3-11 (in Ukrainian). https://doi.org/10.15407/gof.2022.43.003

Savko, K. A., Samsonov, A. V., Larionov, A. N., Korish, E. H., Chervyakovskaya, M. V. & Bazikov, N. S. (2019). Episodes of growth of the continental crust in the Early Precambrian of Sarmatia. In Fundamental problems of tectonics and geodynamics (Vol. 2), Materials of the LI Tectonic Meeting (pp. 270-273). Moscow: GEOS (in Russian).

Kröner, A. (2007). Chapter 5.2. The ancient gneiss complex of Swaziland and environs: record of early Ar-chean crustal evolution in Southern Africa. In Earth’s Oldest Rocks. Developments in Precambrian Geology (Vol. 15) (pp. 465-480). Elsevier. https://doi.org/10.1016/S0166-2635(07)15052-0

Ghosh, J. G. (2004). 3.56 Ga tonalite in the central part of the Bastar Craton, India: oldest Indian date. J. Asian Earth Sci., 23, pp. 359-364. https://doi.org/10.1016/S1367-9120(03)00136-6

Rajesh, H. M., Mukhopadhyay, J., Beukes, N. J., Belyanini, G. A. & Armstrong, R. A. (2009). Evidence for an early Archaean granite from Bastar Craton, India. J. Geol. Soc., 166, pp. 193-196. https://doi.org/10.1144/0016-76492008-089

Wan, Y.-S., Liu, D.-Y., Dong, C.-Y., Xie, H.-Q., Kröner, A., Ma, M.-Z., Liu, S.-J., Xie, S.-W. & Ren, P. (2015). For-mation and Evolution of Archean Continental Crust of the North China Craton. In Precambrian Geology of China (pp. 59-136). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-662-47885-1_2

Iizuka, T., Komiya, T., Ueno, Y., Katayama, I., Uehara, Y., Maruyama, S., Hirata, T., Johnson, S. P. & Dunkley, D. J. (2007). Geology and zircon geochronology of the Acasta Gneiss Complex, northwestern Canada: new con-straints on its tectonothermal history. Precambrian Res., 153, pp. 179-208. https://doi.org/10.1016/j.precamres.2006.11.017

Iizuka, T., Komiya, T., Johnson, S. P., Kon, Y., Maruyama, S. & Hirata, T. (2009). Reworking of Hadean crust in the Acasta gneisses, northwestern Canada: evidence from in-situ Lu–Hf isotope analysis of zircon. Chem. Geol., 259, pp. 230-239. https://doi.org/10.1016/j.chemgeo.2008.11.007

Downloads

Published

11.07.2023

How to Cite

Artemenko, G., Shumlyanskyy, L., & Dovbysh, L. (2023). Th e age of detrital zircon from metasedimentary rocks of the Ternuvate strata (West Azov block of the Ukrainian Shield). Reports of the National Academy of Sciences of Ukraine, (3), 49–59. https://doi.org/10.15407/dopovidi2023.03.049

Most read articles by the same author(s)