A multiplicity theorem for Fréchet spaces
DOI:
https://doi.org/10.15407/dopovidi2022.05.010Keywords:
Fréchet space s, Lyusternik—Schnirelmann category, Palais—Smale condition, discrete group actionAbstract
This note serves to announce a multiplicity result for Keller C1c -functionals on Fréchet spaces which are invariant under the action of a discrete subgroup. For such functionals, we evaluate the minimal number of critical points by applying the Lyusternik—Schnirelmann category.
Downloads
References
Eftekharinasab, K. (2018). A generalized Palais—Smale condition in the Fréchet space setting. Proc. Int. Geom. Cent., 11, No. 1, pp. 1-11. https://doi.org/10.15673/tmgc.v11i1.915
Keller, H. (1974). Differential calculus in locally convex spaces. Berlin: Springer.
Hyers, D. H., Isac, G. & Rassias, T. M. (1997). Topics in nonlinear analysis and applications. Singapore: World Scientific.
Szulkin, A. (1988). Ljusternik—Schnirelmann theory on C1-manifolds. Ann. Inst. Henri Poincare (C). Anal. Non Lineaire, 5, Iss. 2, pp. 119-139. https://doi.org/10.1016/S0294-1449(16)30348-1
Munkres, J. R. (2000). Topology. 2nd ed. Hoboken: Prentice Hall. Inc.
Van Mill, J. (1988). Infinite-dimensional topology. Prerequisites and introduction. Amsterdam: North-Holland.
Palais, R. (1966). Lusternik—Schnirelman theory on Banach manifolds. Topology, 5, pp. 115-132. https://doi.org/10.1016/0040-9383(66)90013-9
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.