Determination of absolute configuration of dihydroindenols by enzymatic analysis and chiral HPLC

Authors

DOI:

https://doi.org/10.15407/dopovidi2022.04.077

Keywords:

enzymatic deracemization, Burkholderia cepacia lipase, absolute configuration, Kazlauskas rule, chiral HPLC

Abstract

Racemic 1,2-dihydroindenols were resolved into enantiomers using kinetically controlled esterification in the presence of Burkholderia cepacia lipase (BCL) biocatalyst. The resolution of halodihydroindenol acetates to enantiomers by enzymatic hydrolysis in the presence of Candida Antarctica B lipases immobilized on diatomite was also studied. To determine the absolute configuration of stereoisomers of halodihydroindenols, chiral HPLC analysis was used in combination with enzymatic analysis. The combined use of several methods increases the reliability in determining the absolute configuration of the studied compounds.

Downloads

Download data is not yet available.

References

Rousse, l C., Del Rio, A., Pierrot-Sanders, J., Piras, P. & Vanthuyne, N. (2004). Chiral liquid chromatography contribution to the determination of the absolute configuration of enantiomers. J. Chromatogr. A, 1037, pp. 311-328. https: //doi. org/10.1016/j. chroma. 2004. 01. 065

Liu, F., Boross, P. I., Wang, Y. -F., Tozser, J., Louis, J. M., Harrison, R. W. & Weber, I. T. (2005). Kinetic, stability, and structural changes in high-resolution crystal structures of HIV-1 protease with drug-resistant mutations L24I, I50V, and G73S. J. Mol. Biol., 354, pp. 789-800. https: //doi. org/10. 1016/j. jmb. 2005. 09. 095

Shankar, S. S., Dubé, M. P., Gorski, J. C., Klaunig, J. E. & Steinberg, H. O. (2005). Indinavir impairs endothelial function in healthy HIV-negative men. Am. Heart J., 150, pp. 933. https: //doi. org/10.1016/j. ahj. 2005. 06. 005

Igarashi, Y., Otsutomo, S., Harada, M. & Nakano, S. (1997). Enzymatic resolution of indene bromohydrin acetate using immobilized lipase. Tetrahedron: Asymmetry, 8, pp. 2833-2837. https: //doi. org/10. 1016/S0957-4166(97)00351-0

Weinstock, M., Luques, L., Bejar, C. & Shoham, S. (2006). Ladostigil, a novel multifunctional drug for the treatment of dementia co-morbid with depression. J. Neural Transm., Suppl. 70, pp. 443-446. https: //doi. org/10.1007/978-3-211-45295-0_67

Prysiazhnuk, D. V., Kolodiazhna, О. О. & Kolodiazhnyi, O. I. (2020). Enzymatic deracemization of halogenated dihydroindenols and dihydroindenediols substituted in benzene ring. Dopov. Nac. akad. nauk Ukr., No. 3, pp. 71-81. https: //doi.org/10. 15407/dopovidi2020. 03. 071

Kišić, A., Stephan, M. & Mohar, B. (2015). ansa-Ruthenium(II) complexes of R2NSO2DPEN-(CH2)n(η6-aryl) conjugate ligands for asymmetric transfer hydrogenation of aryl ketones. Adv. Synth. Catal., 357, pp. 2540- 2546. https: //doi.org/10.1002/adsc.201500288

Yoshimatsu, S., Yamada, A. & Nakata, K. (2018). Silylative kinetic resolution of racemic 1-indanol derivatives catalyzed by chiral guanidine. J. Org. Chem., 83, pp. 452-458. https: //doi.org/10.1021/acs. joc. 7b02493

Falconnet, A., Magre, M., Maity, B., Cavallo, L. & Rueping, M. (2019). Asymmetric magnesium-catalyzed hydroboration by metal-ligand cooperative catalysis. Angew. Chem., 58, pp. 17567-17571. https: //doi. org/10.1002/anie.201908012

FDA’s policy statement for the development of new stereoisomeric drugs. (1992). Chirality, 4, pp. 338-340. https: //doi. org/10.1002/chir.530040513

Lough, W. J. (Ed. ). (1989). Chiral liquid chromatography. New York: Blackie/Chapman and Hall.

Pirkle, W. H. & Pochapsky, T. C. (1989). Considerations of chiral recognition relevant to the liquid chromatography separation of enantiomers. Chem. Rev., 89, pp. 347-362. https: //doi.org/10.1021/cr00092a006

Kazlauskas, R. J., Weissfloch, A. N. E., Rappaport, A. T. & Cuccia, L. A. (1991). A rule to predict which enantiomer of a secondary alcohol reacts faster in reactions catalyzed by cholesterol esterase, lipase from Pseudomonas cepacia, and lipase from Candida rugosa. J. Org. Chem., 56, pp. 2656-2665. https: //doi. org/10.1021/jo00008a016

Prysiazhnuk, D. V., Rusanov, E. B. & Kolodiazhnyi, O. I. (2021). The absolute configu-ration of 2-bromo-2, 3- dihydro-1H-inden-1-ols. Synth. Commun., 51, pp. 3023-3031. https: //doi.org/10.1080/00397911.2021.1960378

Seco, J. M., Quiñoá, E. & Riguera, R. (2004). The assignment of absolute configuration by NMR. Chem. Rev., 104, 17-117. https: //doi.org/10.1021/cr000665j

Kolodiazhna, O. O., Prysiazhnuk, D. V., Kolodiazhna, A. O. & Kolodiazhnyi, O. I. (2022). Synthesis of optically active vicinal fluorocyclopentanols and fluorocyclopentanamines by enzymatic deracemization. Arkivoc, 3, pp. 14-26. https: //doi.org/10.24820/ark. 5550190. p011.634

Published

27.08.2022

How to Cite

Prysiazhnuk, D. ., Kolodyazhna, O. ., Kolodyazhna А. ., & Faiziiev, O. . (2022). Determination of absolute configuration of dihydroindenols by enzymatic analysis and chiral HPLC. Reports of the National Academy of Sciences of Ukraine, (4), 77–86. https://doi.org/10.15407/dopovidi2022.04.077