Modification of the hydro-thermal mineral-forming fluid composition in the Early Precambrian of the Earth

Authors

  • Yu.N. Demikhov Institute of Environmental Geochemistry of the NAS of Ukraine, Kyiv
  • Yu.A. Fomin Institute of Environmental Geochemistry of the NAS of Ukraine, Kyiv
  • V.G. Verkhovtsev Institute of Environmental Geochemistry of the NAS of Ukraine, Kyiv
  • V.V. Pokalyuk Institute of Environmental Geochemistry of the NAS of Ukraine, Kyiv
  • N.N. Borisova Institute of Environmental Geochemistry of the NAS of Ukraine, Kyiv

DOI:

https://doi.org/10.15407/dopovidi2020.04.077

Keywords:

Archaean, gas-liquid inclusions, isotope composition, mineral fluids, Proterozoic, Ukrainian Shield, uranium and gold deposits

Abstract

Based on the experimental isotope-geochemical study of the fluid of gas-liquid inclusions in the minerals of the Early Precambrian deposits of gold and uranium of the Ingul megablock and Srednepridneprovsk granitegreenstone belts of the Ukrainian shield, a decrease in the content of carbon dioxide and light carbon dioxide is found in hydrothermal mineral-forming fluids at the Archaean-Proterozoic boundary. The molar part of CO2 in mineral-forming fluids to a certain extent correlates with atmospheric pressure. The evolution of the Earth’s outer shells at the Archean-Paleoproterozoic boundary, which was manifested globally by a change in the atmosphere from oxygen-free to oxygen and a decrease in carbon dioxide content, is compared with a change in the endogenous processes of the formation of ore-and mineral-forming hydrothermal fluids. An increase in the oxygen content in the Precambrian atmosphere occurred later than a decrease in the carbon dioxide content in the mineral-forming fluid. An increase in the content of the light carbon isotope in the Paleoproterozoic mine ralforming fluid was probably due to the oxidation of organic matter due to the appearance of photosynthesis.

Downloads

References

Holland, H. D. (2002). Volcanic gases, black smokers, and the Great Oxidation Event. Geochim. Cosmochim. Acta, 66, pp. 3811-3826. Doi: https://doi.org/10.1016/S0016-7037(02)00950-X

Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. (2014). The rise of oxygen in Earth’s early ocean and atmosphere. Nature, 506, pp. 307-315. Doi: https://doi.org/10.1038/nature13068

Valley, J. W., Lackey, J. S., Cavosie, A. J., Clechenko, C. C., Spicuzza, M. J., Basei, M. A. S., Bindeman, I. N., Ferreira, V. P., Sial, A. N., King, E. M., Peck, W. H., Sinha, A. K. & Wei, C. S. (2005). 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contrib. Mineral. Petrol., 150, pp. 561-580. Doi: https://doi.org/10.1007/s00410-005-0025-8

Letnikov, F. A. (1982). Fluids in magmatic processes (pp. 242-253). Moscow: Nauka (in Russian). Doi: https://doi.org/10.2307/129711

Goncharuk, V. V., Fomin, Yu. A., Demikhov, Yu. N. & Verkhovtsev, V. G. (2019). Phenomenon of evolution of hydrothermal fluids of mineral formation at the Archaean Proterozoic boundary. Khimiia i Tekhnolohiia Vody, 41, No. 3, pp. 249-259 (in Russian). Doi: https://doi.org/10.3103/S1063455X19030019

Young, G. M. (2018). Chapter 2. Precambrian glacial deposits: their origin, tectonic setting, and key role in earth evolution. In Past glacial environments. 2 ed. (pp. 17-45). Elsevier. Retrieved from http://www.sdgs.usd.edu/pubs/PAPERS_PUBLICATIONS/Past%20Glacial%20Enviro. Doi: https://doi.org/10.1016/B978-0-08-100524-8.00001-4

Hayashi, C., Nakazawa, K. & Mizuno, H. (1979). Earth’s melting dueto the blanketing effect of the primordial dense atmosphere. Earth Planet. Sci. Lett., 43, pp. 22-28. Doi: https://doi.org/10.1016/0012-821X(79)90152-3

Sorokhtin, O. G. & Ushakov, S. A. (2002). Earth evolution. Moscow: Izd-vo MGU (in Russian).

Som, S. M., Catling, D. C., Harnmeijer, J. P., Polivka, P. M. & Buick, R. (2012). Air density 2.7 billion years ago limited to less than twice modern levels by fossil raindrop imprints. Nature, 484, pp. 359-362. Doi: https://doi.org/10.1038/nature10890

Taylor, H. P. (1974). The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ. Geol., 69, pp. 843-883. Doi: https://doi.org/10.2113/gsecongeo.69.6.843

Mulkidjanian, A. Y. & Junge, W. (1997). On the origin of photosynthesis as inferred from sequence analysis. Photosynth. Res., 51, pp 27-42. Doi: https://doi.org/10.1023/A:1005726809084

Galimov, E. M. (1968). Geochemistry of stable carbon isotopes. Moscow: Nedra (in Russian).

Schidlowski, M., Appel, P. W. U., Eichmann, R. & Junge, C. E. (1979). Carbon isotope geochemistry of the 3.7 × 109-yr-old Isua sediments, West Greenland: implications for the Archaean carbon and oxygen cycles. Geochim. Cosmochim. Acta, 43, Iss. 2, pp. 189-199. Doi: https://doi.org/10.1016/0016-7037(79)90238-2

Schidlowski, M. (1983). Evolution of photoautotrorhy and early atmospheric oxygen levels. Precambrian Res., 20, Iss. 2-4, pp. 319-335. Doi: https://doi.org/10.1016/0301-9268(83)90079-7

Savin, S. M. & Epstein, S. (1970). The oxygen and hydrogen isotope geochemistry of ocean sediments and shales. Geochim. Cosmochim. Acta, 34, Iss. 1, pp. 42-63. Doi: https://doi.org/10.1016/0016-7037(70)90150-X

Published

28.03.2024

How to Cite

Demikhov, Y., Fomin, Y. ., Verkhovtsev, V. ., Pokalyuk, V. ., & Borisova, N. . (2024). Modification of the hydro-thermal mineral-forming fluid composition in the Early Precambrian of the Earth . Reports of the National Academy of Sciences of Ukraine, (4), 77–84. https://doi.org/10.15407/dopovidi2020.04.077