Soliton in a onedimensional force chain with Hertz contacts
DOI:
https://doi.org/10.15407/dopovidi2020.03.036Keywords:
binary collisions, effective mass, energy transmission, Hertz chain, quasiparticle, solitonAbstract
We study comprehensively a nonlinear solitonic mode which propagates in the long-wave limit in a 1D chain of identical spherical particles interacting with each other by the Hertz law. The obtained theoretical results have been compared with relevant parameters of familiar Nesterenko’s soliton. Quantitative discrepancies between parameters of both results are outlined. Particular attention has been paid to the study of parameters which describe the impact conditions for a discrete chain and correspond to the solitonic mode generation, nonhomogeneous energy distribution, and the arrest of the solitonic energy within a particularly decorated (defected) chain. The amplitude of the soliton mode reflected from an impurity particle is estimated theoretically and found to be in a good agreement with the experimental data (much better than in analogous works).
Downloads
References
Fermi, E., Pasta, J. R. & Ulam, S. M. (1955). Studies of Nonlinear Problems. Technical Report LA-1940, Los Alamos Sci. Lab., pp. 978-988. Doi: https://doi.org/10.2172/4376203
Nesterenko, V. F. (1983). Propagation of nonlinear compression pulses in granular media. J. Appl. Mech. Tech. Phys. (Engl. Trans.), 24, No. 5, pp. 733-743. Doi: https://doi.org/10.1007/BF00905892
Goldhirsch, I. S. A. A. C. & Zanetti, G. (1993). Clustering instability in dissipative gases. Physical review letters, 70, No. 11, pp. 1619-1622. Doi: https://doi.org/10.1103/PhysRevLett.70.1619
Coste, C., Falcon, E. & Fauve, S. (1997). Solitary waves in a chain of beads under Hertz contact. Phys. Rev. E, 56, No. 5, pp. 6104-6117. Doi: https://doi.org/10.1103/PhysRevE.56.6104
Hascoët, E. & Herrmann, H. J. (2000). Shocks in non-loaded bead chains with impurities. The Eur. Phys. J. B, 14, pp. 183-190. Doi: https://doi.org/10.1007/s100510050119
Chatterjee, A. (1999). Asymptotic solution for solitary waves in a chain of elastic spheres. Phys. Rev. E, 59, No. 5, pp. 5912-5919. Doi: https://doi.org/10.1103/PhysRevE.59.5912
Daraio, C., Nesterenko, V. F., Herbold, E. B. & Jin S. (2006). Tunability of solitary wave properties in onedimensional strongly nonlinear photonic crystals. Phys. Rev. E, 73, No. 2, pp. 026610/1-10. Doi: https://doi.org/10.1103/PhysRevE.73.026610
Job, S., Melo, F., Sokolow, A. & Sen, S. (2007). Solitary wave trains in granular chains: experiments, theory and simulations. Granular Matter, 10, No. 1, pp. 13-20. Doi: https://doi.org/10.1007/s10035-007-0054-2
Gerasymov, O. I. & Vandewalle, N. (2012). On the exact solutions of the problem of impulsive propagation in an inhomogeneous granular chain. Dopov. Nac. acad. nauk Ukr., No. 8, pp. 67-72 (in Ukrainian).
Stefanov, A. & Kevrekidis, P. (2012). On the Existence of Solitary Traveling Waves for Generalized Hertzian Chains. J. Nonl. Sci., 22, No. 3, pp. 327-349. Doi: https://doi.org/10.1007/s00332-011-9119-9
Li, F., Zhao, L., Tian, Zh., Yu, L. & Yang, J. (2013). Visualization of solitary waves via laser Doppler vibrometry for heavy impurity identification in a granular chain. Smart Mater. Struct., 22, No. 3, pp. 035016/1-10. Doi: https://doi.org/10.1088/0964-1726/22/3/035016
Lumay, G., Dorbolo, S., Gerasymov, O. & Vandewalle, N. (2013). Experimental study of a vertical column of grains submitted to a series of impulses. Eur. Phys. J. E, 36, No. 2, pp. 16/1-6. Doi: https://doi.org/10.1140/epje/i2013-13016-1
Gerasymov, O. I. (2015). Physics of granular materials. Odesa: TES (in Ukrainian).
Yasuda, H., Chong, C., Yang, J. & Kevrekidis, P. G. (2017). Emergence of dispersive shocks and rarefaction waves in power-law contact models. Phys. Rev. E, 95, No. 6, pp. 062216/1-5. Doi: https://doi.org/10.1103/PhysRevE.95.062216
Donovan, K. J. (2019). Microfluidic Investigations of Capillary Flow and Surface Phenomena in Porous Polymeric Media for 3D Printing. (Thesis PhD in Materials Science). Oregon State Univ., Corvallis, USA.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.