Gadolinium orthovanadate nanoparticles increase survival of old rats
DOI:
https://doi.org/10.15407/dopovidi2020.02.029Keywords:
body temperature, GdVO4 : Eu3 , nanoparticles, prooxidant-antioxidant balance., survival of old rats, thyroxinеAbstract
The effect of europium-activated gadolinium orthovanadate nanoparticles (GdVO4 : Eu3+ NPs, 8x25 nm) on the survival, thyroxine concentration, body temperature, and prooxidant-antioxidant balance in liver and blood of aging rats was studied. It was found that the application of GdVO4 : Eu3+ NPs with drinking water (0.25— 0.3 mg/kg of weight per day) from 22-month-old age leads to a significant increase in the survival. The survival medians of control and experimental rats were 900 and 1010 days. A decrease in the rectal temperature and the preservation of the thyroxine concentration in the blood at the level of younger animals were noted: 50.1 ± 1.9 nmol / L vs. 41.4 ± 3.3 nmol / L in the control (p < 0.05). The normalization of the prooxidant-antioxidant balance in liver and blood of aging animals has been established. So, in 33 month old rats treated with nanoparticles, the level of lipid hydroperoxides in serum and liver mitochondrial fraction decreased and did not differ from the indices of 12 month old control rats. Apparently, this effect was facilitated by an increase in the activity of the glutathione peroxidase antioxidant system and glutathione reductase activity in the postmitochondrial fraction of liver to the level of 12 month old rats under the influence of nanoparticles. The data obtained indicate the pro mise of GdVO4Eu3+ NPs for the development of geroprotective drugs that increase the life expectancy of an aging organism.
Downloads
References
Harman, D. (2001). Aging: overview. Ann. N.Y. Acad. Sci. 928(1), pp. 1-21. Doi: https://doi.org/10.1111/j.1749-6632.2001.tb05631.x
Sohal, R. S. (2002). Role of oxidative stress and protein oxidation in the aging process. Free Radical Biology and Medicine. 33(1), pp. 37-44. Doi: https://doi.org/10.1016/S0891-5849(02)00856-0
Finkel, T., Holbrook, N. J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature, 408(6809), p. 239. Doi: https://doi.org/10.1038/35041687
Melov, S. (2002). Therapeutics against mitochondrial oxidative stress in animal models of aging. Ann. N.Y. Acad. Sci. 959(1), pp. 330-340. Doi: https://doi.org/10.1111/j.1749-6632.2002.tb02104.x
Nikitchenko, Yu. V. (2012) Prooxidant-antioxidant system in ageing processes and experimental approaches to its correction (Unpublished doctor thesis). Karasin National University, Kharkov, Ukraine (in Ukrainian).
Kim, J., Takahashi, M., Shimizu, T., Shirasawa, T., Kajita, M., Kanayama, A. & Miyamoto, Y. (2008). Effects of a potent antioxidant, platinum nanoparticle, on the lifespan of Caenorhabditis elegans. Mechanisms of ageing and development, 129(6), pp. 322-331. Doi: https://doi.org/10.1016/j.mad.2008.02.011
Quick, K. L., Ali, S. S., Arch, R., Xiong, C., Wozniak, D. & Dugan, L. L. (2008). A carboxyfullerene SOD mimetic improves cognition and extends the lifespan of mice. Neurobiology of aging, 29(1), pp. 117-128. Doi: https://doi.org/10.1016/j.neurobiolaging.2006.09.014
Narayanan, K. B. & Park, H. H. (2013). Pleiotropic functions of antioxidant nanoparticles for longevity and medicine. Advances in colloid and interface science. 201, pp. 30-42. Doi: https://doi.org/10.1016/j.cis.2013.10.008
Tripathi, D., Mani, V. & Pal, R. P. (2018). Vanadium in biosphere and its role in biological processes. Biological trace element research. 186(1), pp. 52-67. Doi: https://doi.org/10.1007/s12011-018-1289-y
Karpenko, N. A., Malukin, Yu. V., Koreneva, E. M., Klochkov, V. K., Kavok, N. S., Smolenko, N. P. & Pochernyaeva, S. S. (2013, September). The Effects of Chronic Intake of Cerium Dioxide or Gadolinium Ortovanadate Nanoparticles in Aging Male Rats. Proceedings of the 3rd Int. conf. Nanomaterials: Applications and Properties, 2013, (pp. 04NAMB28-1–04NAMB28-4), Alushta.
Averchenko, E. A., Kavok, N. S., Klochkov, V. K., & Malyukin, Yu. V. (2014). Chemiluminescent Diagnostics of Free-Radical Processes in an Abiotic System and in Liver Cells in the Presence of Nanoparticles Based on Rare-Earth Elements nReVO4 : Eu3+(Re Gd, Y, La) and CeO2. J. Appl. Spectrosc., 81(5), pp. 827-833. Doi: https://doi.org/10.1007/s10812-014-0012-9
Klochkov, V. K., Malyshenko, A. I., Sedykh, O. O., & Malyukin, Y. V. (2011). Wet chemical synthesis and characterization of luminescent colloidal nanoparticles: ReVO4 : Eu3+(Re - La, Gd, Y) with rod-like and spindle-like shape. Functional materials, pp. 111-115.
Klochkov, V. K., Grigorova, A. V., Sedyh, O. O. & Malyukin, Yu. V. (2012). Characteristics of nLnVO4 : Eu3+ (Ln - La, Gd, Y, Sm) sols with nanoparticles of different shapes and sizes. J. Appl. Spectrosc., 79(5), pp. 726-730. Doi: https://doi.org/10.1007/s10812-012-9662-7
Bozhkov, A. I. & Nikitchenko, Yu. V. (2013). Caloric restriction diet induces specific epigenotypes associated with life span extension. J. Nutrition. Therapeut., 2(1), pp. 30-39. Doi: https://doi.org/10.6000/1929-5634.2013.02.01.4
Belostotskaia, L. I., Dziuba, V. N. & Nikitchenko, I. (2008). The effect of three different hypocaloric diets on oxidative phosphorylation and activity of enzymatic antioxidant system in rat liver mitochondria. Advances in gerontology - Uspekhi gerontologii, 21(2), pp. 235-239 (in Russian).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.