MICROWAVE ABSORPTION EFFECT OF NON-STOICHIOMETRIC SILICON CARBIDE

Authors

DOI:

https://doi.org/10.15407/dopovidi2025.02.065

Keywords:

lattice parameters, solid solution of carbon in silicon carbide, microwave oven, frequency, microwave absorption

Abstract

The interaction of thermally expanded graphite and naphthocox with dispersed silicon at 1200 °C leads to the formation of a solid solution of carbon in silicon carbide, which is accompanied by an underestimation of the lattice parameter value relative to the standard value of β-SiC (а = 0.43596 nm). For the powders synthesized in the systems naphthcoke-silicon and thermally expanded graphite-silicon, the lattice parameters of β-SiC are 0.43560 nm and 0.43532 nm, respectively. Microwave absorption studies of the synthesized powders in a household microwave oven with an operating frequency of 2.45 GHz were carried out. The investigated silicon carbide powders absorb microwave radiation, which is accompanied by an intensive temperature increase due to the formed structure of solid solution of carbon in silicon carbide. It was discovered that a higher concentration of dissolved carbon accompanied by a lower lattice parameter of the synthesized silicon carbide contributes to more intense microwave absorption. It is found that lower lattice parameter of silicon carbide leads to better microwave absorption.

Downloads

References

Qin, F. & Brosseau, C. (2012). A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles. J. Appl. Phys., 111, No. 6, 061301. https://doi.org/10.1063/1.3688435

Yin, X., Kong, L., Zhang, L., Cheng, L., Travitzky, N. & Greil, P. (2014). Electromagnetic properties of Si—C—N based ceramics and composites. Int. Mater. Rev., 59, No. 6, pp. 326-355. https://doi.org/10.1179/174328041 4Y.0000000037

Zhao, D.-L., Li, X. & Shen, Z.-M. (2009). Preparation and electromagnetic and microwave absorbing properties of Fe-filled carbon nanotubes. J. Alloys Compd., 471, No. 1-2, pp. 457-460. https://doi.org/10.1016/j. jallcom.2008.03.127

Liang, J., Wang, Y., Huang, Y., Ma, Y., Liu, Z., Cai, J., Zhang, C., Gao, H. & Chen, Y. (2009). Electromagnetic interference shielding of graphene/epoxy composites. Carbon, 47, No. 3, pp. 922-925. https://doi.org/10.1016/j. carbon.2008.12.038

Jin, H.-B., Cao, M.-S., Zhou, W. & Agathopoulos, S. (2010). Microwave synthesis of Al-doped SiC powders and study of their dielectric properties. Mater. Res. Bull., 45, No. 2, pp. 247-250. https://doi.org/10.1016/j. materresbull.2009.09.015

Li, X., Zhang, L., Yin, X., Feng, L. & Li, Q. (2010). Effect of chemical vapor infiltration of SiC on the mechanical and electromagnetic properties of Si3N4—SiC ceramic. Scr. Mater., 63, No. 6, pp. 657-660. https://doi. org/10.1016/j.scriptamat.2010.05.034

Duan, W., Yin, X., Li, Q., Liu, X., Cheng, L. & Zang, L. (2014). Synthesis and microwave absorption properties of SiC nanowires reinforced SiOC ceramic. J. Eur. Ceram Soc., 34, No. 2, pp. 257-266. https://doi.org/10.1016/j. jeurceramsoc.2013.08.029

Qing, Y., Zhou, W., Huang, S., Huang, Z., Luo, F. & Zhu, D. (2014). Evolution of double magnetic resonance behavior and electromagnetic properties of flake carbonyl iron and multi-walled carbon nanotubes filled epoxy-silicone. J. Alloys Compd., 583, pp. 471-475. https://doi.org/10.1016/j.jallcom.2013.09.002

Wang, H., Zhu, D., Zhou, W. & Luo, F. (2014). Microwave electromagnetic properties of polyimide/carbonyl iron composites. J. Polym. Res., 21, 478. https://doi.org/10.1007/s10965-014-0478-4

Ye, F., Zhang, L., Yin, X., Liu, Y. & Cheng, L. (2013). Dielectric and electromagnetic wave absorbing properties of two types of SiC fibers with different compositions. J. Mater. Sci. Technol., 29, No. 1, pp. 55-58. https://doi. org/10.1016/j.jmst.2012.11.006

Chung, D. D. L. (2001). Electromagnetic interference shielding effectiveness of carbon materials. Carbon, 39, No. 2, pp. 279-285. https://doi.org/10.1016/S0008-6223(00)00184-6

Li, Q., Yin, X., Duan, W., Kong, L., Hao, B. & Ye, F. (2013). Electrical, dielectric and microwave-absorption properties of polymer derived SiC ceramics in X band. J. Alloys Compd., 565, pp. 66-72. https://doi.org/10.1016/j. jallcom.2013.02.176

Liu, H. & Tian, H. (2012). Mechanical and microwave dielectric properties of SiCf/SiC composites with BN interphase prepared by dip-coating process. J. Eur. Ceram. Soc., 32, No. 10, pp. 2505-2512. https://doi. org/10.1016/j.jeurceramsoc.2012.02.009

Yang, H.-J., Yuan, j., Li, Y., Hou, Z.-L., Jin, H.-B., Fang, X.-Y., Cao, M.-S. (2013). Silicon carbide powders: Temperature-dependent dielectric properties and enhanced microwave absorption at gigahertz range. Solid State Commun., 163, pp. 1-6. https://doi.org/10.1016/j.ssc.2013.03.004

Wang, P., Cheng, L., Zhang, Y. & Zhang, L. (2017). Synthesis of SiC nanofibers with superior electromagnetic wave absorption performance by electrospinning. J. Alloys Compd., 716, No. 5, pp. 306-320. https://doi. org/10.1016/j.jallcom.2017.05.059

Singh, S., Bhaskar, R., Narayanan, K.-B., Kumar, A. & Debnath, K. (2024). Development of silicon carbide (SiC)-based composites as microwave-absorbing materials (MAMs): A review. J. Eur. Ceram. Soc., 44. No. 13, pp. 7411-7431. https://doi.org/10.1016/j.jeurceramsoc.2024.05.032

Kumar, A., Singh, S. & Singh, D. (2019). Effect of heat treatment on morphology and microwave absorption behavior of milled SiC. J. Alloys Compd., 772, pp. 1017-1023. https://doi.org/10.1016/j.jallcom.2018.09.136

Zhao D., Luo F. & Zhou, W.-C. (2010). Microwave absorbing property and complex permittivity of nano SiC particles doped with nitrogen. J. Alloys Compd., 490, No. 1-2, pp. 190-194. https://doi.org/10.1016/j. jallcom.2009.09.008

Zou, G., Cao, M., Lin, H., Jin, H., Kang, Y. & Chen, Y. (2006). Nickel layer deposition on SiC nanoparticles by simple electroless plating and its dielectric behaviors. Powder Technol., 168, No. 2, pp. 84-88. https://doi. org/10.1016/j.powtec.2006.07.002

Li, D., Jin, H.-B., Cao, M.-S., Chen, T., Dou, Y.-K., Wen, B. & Agathopoulos, S. (2011). Production of Ni-doped SiC nanopowders and their dielectric properties. J. Am. Ceram. Soc., 94, No. 5, pp. 1523-1527. https://doi. org/10.1111/j.1551-2916.2010.04293.x

Jin, H.-B., Cao, M.-S., Zhou, W. & Agathopoulos, S. (2010). Microwave synthesis of Al-doped SiC powders and study of their dielectric properties. Mater. Res. Bull., 45, No. 2, pp. 247-250. https://doi.org/10.1016/j. materresbull.2009.09.015

Mykhaylyk, O. O. & Gadzira, M. P. (1999). Arrangement of C atoms in the SiC—C solid solution. Acta Cryst., 55, pp. 297-305. https://doi.org/10.1107/S0108768198013950

Gadzyra, N. F. & Gnesin, G. G. (2001). Mechanism for the formation of a solid solution of carbon in silicon carbide. powder metall. Met. Ceram., 40, No. 9-10, pp. 519-525. https://doi.org/10.1023/A:1014352009750

Published

30.04.2025

How to Cite

Gadzyra, M., Davydchuk, N., Tymoshenko, Y., Pinchuk, M., & Galyamin, V. (2025). MICROWAVE ABSORPTION EFFECT OF NON-STOICHIOMETRIC SILICON CARBIDE. Reports of the National Academy of Sciences of Ukraine, (2), 65–72. https://doi.org/10.15407/dopovidi2025.02.065