On one generalized integral transform of the Bessel type
DOI:
https://doi.org/10.15407/dopovidi2014.12.024Keywords:
basic properties, generalization of the Bessel function, integral representationAbstract
A generalization of the Bessel function is introduced. Its integral representation and basic properties are given. A generalized integral transform of the Bessel type is constructed. The inversion formula of this integral transform is given.
Downloads
References
Kilbas A. A., Saigo M. H-transforms. London: Chapman and Hall, 2004. https://doi.org/10.1201/9780203487372
Virchenko N. O. Generalized integral transformation, Kyiv: Zadruga, 2013 (in Ukrainian).
Akhiezer N. I. Lectures on integral transforms, Kharkov: Vuscha shk., 1984 (in Russian).
Bruchkov Yu. A., Prudnikov A. P., Shushov V. S. Operational calculus In: The results of science and technology. Mathematical analysis, Moscow: VINITI AN USSR, 1979: 99–148 (in Russian).
Samoilenko A. M., Krivosheia S. A., Perestiyk M. O. Differential equations in problems, Kyiv: Lubid, 2003 (in Ukrainian).
Beitmen G., Erdeii A. Higher transcendental functions. Vol. 1, Moscow: Nauka, 1965 (in Russian).
Vatson G. N. The theory of Bessel functions. Pt. 1, Moscow: Izd-vo inostr. lit., 1949 (in Russian).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.