On the definition of a contact within the Sretenskii model class

Authors

  • Yu. I. Dubovenko

DOI:

https://doi.org/10.15407/dopovidi2015.03.087

Keywords:

contact problem, gravity inversion, Sretenskii model class

Abstract

The inverse contact problem of gravity inversion for a density interface within the Sretenskii class is posed. A discontinuity of the gravity vertical derivative, which appears on problem's right-hand side, is proved. This feature is used to reduce the problem to the alternative statement in the form of the 1st kind integral equation. By means of the residual analysis of the boundaries for the corresponding integrals, an efficient technique for the successive calculation of the density interface is developed. The problem is generalized onto the case of n boundaries, while preserving its correctness within the Sretenskii class.

Downloads

References

Strakhov V. N. Heofiz. zhurn., 2003, 25, No 1, 3–7 (in Russian).

Strakhov V. N. Heofiz. zhurn., 2007, 29, No 1: 56–84 (in Russian).

Buchkov S. G., Simanov A. A., Khokhlova V. V. Vestn. Perm. Univ. Geologiia, 2013, Iss. 3(20): 61–70 (in Russian).

StrakhovV. N., Kerimov I. A., Stepanova I. E et al. In: Geophysics and mathematics, Perm: Gorn. in-t UrO RAN, 2001: 274–277 (in Russian).

Strakhov V. N. In: Geophysics and mathematics, Moscow: Izd-vo Mosc. Univ., 1999: 12–19 (in Russian).

Yakymchyk A. I., Chorna O. A. Visn. Kyiv. nac. Univ. im. Tarasa Shevchenka. Geologia, 2010, Iss. 51: 12–14 (in Ukrainian).

Dubovenko Yu. I., Visn. Kyiv. nac. Univ. im. Tarasa Shevchenka. Geologia, 2011, Iss. 55: 61–65 (in Ukrainian).

Dubovenko Yu. I., Chernaia O. A. XI Mezhdunar. konf. po geoinformatike – teoreticheskie i prikladnye aspektu (Geoinformatika), Kiev, 14–7 may 2012: Sb. nauch. tr., Kiev: Karbon LTD, 2012, – CD-ROM: 3494 (in Russian).

Bulakh E. G. Dopov. Nac akad. nauk Ukr., 2002, 1: 117–119 (in Russian).

Bulakh E. G. Dopov. Nac akad. nauk Ukr., 2002, 5: 128–132 (in Russian).

Bulakh E. G., Slobodnik N. A. Geofiz. zhurn., 2008, 30, No 3: 49–55 (in Russian).

Dubovenko Yu. I., Chornyi A. V. Geofiz. zhurn., 2002, 24, No 3: 77–92 (in Ukrainian).

Dubovenko Yu. I. Determination of density inhomogeneities in the class of Stretenskogo.XV Ural. molod. nauch. shk. po geofizike, 24–29 march 2014, Ekaterinburg: Sb. dokl., Ekaterinburg: IGf UrO RAN, 2014: 84–86 (in Russian).

Verlan A. F., Sizikov V. S. Integral equations: methods, algorithms, programs, Kiev: Nauk. Dumka, 1986 (in Russian).

Published

21.01.2025

How to Cite

Dubovenko, Y. I. (2025). On the definition of a contact within the Sretenskii model class . Reports of the National Academy of Sciences of Ukraine, (3), 87–93. https://doi.org/10.15407/dopovidi2015.03.087